|
|
Identification of critical and vulnerable components in power grid based on margin betweenness of power flow and margin entropy of power flow transfer |
Wu Ling1, Liu Shangwei1, Gao Zhenyan1, Zhao Ruifeng2, Pan Kaiyan1 |
1. Technology Center of Dongfang Electronics Corporation, Yantai, Shandong 264000; 2. Electric Power Dispatching Control Center of Guangdong Power Grid Co., Ltd, Guangzhou 510600 |
|
|
Abstract In order to quickly and accurately identify the explicit and implicit critical lines in power grid, according to the placement of the line in power grid topology and power flow transfer in real-time operation, considering the static flow margin and dynamic flow transfer margin, a critical power lines identification method based on margin be-tweenness of power flow and margin entropy of power flow transfer is proposed, and the critical line evaluation index is presented. Compared with existing critical power line evaluation method, the proposed method and evalua-tion index not only can find out the static explicit vulnerability of power lines in power network topology, but also identify the dynamic implicit vulnerability of power lines in power flow transfer due to removal of some components. Simulation results on IEEE-30 bus system shows that the method proposed in this paper can effectively identify the key and vulnerable line of power grid.
|
Received: 27 June 2019
Published: 27 February 2020
|
|
|
|
Cite this article: |
Wu Ling,Liu Shangwei,Gao Zhenyan等. Identification of critical and vulnerable components in power grid based on margin betweenness of power flow and margin entropy of power flow transfer[J]. Electrical Engineering, 2020, 21(2): 15-21.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2020/V21/I2/15
|
[1] 印永华, 郭剑波, 赵建军, 等. 美加“8.14”大停电事故初步分析以及应吸取的教训[J]. 电网技术, 2003, 27(10): 8-11, 16. [2] 汤涌, 卜广全, 易俊. 印度“7.30”、“7.31”大停电事故分析及启示[J]. 中国电机工程学报, 2012, 32(25): 167-174. [3] 朱方, 赵红光, 刘增煌, 等. 大区电网互联对电力系统动态稳定性的影响[J]. 中国电机工程学报, 2007, 27(1): 1-7. [4] 胡学浩. 美加联合电网大面积停电事故的反思和启示[J]. 电网技术, 2003, 27(9): T2-T6. [5] 唐葆生. 伦敦南部地区大停电及其教训[J]. 电网技术, 2003, 27(11): 1-5, 12. [6] Bialek J.Tracing the flow of electricity[J]. IEEE Proceedings-Generation Transmission and Distribution, 1996, 143(4): 313-320. [7] Freeman L C.A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41. [8] Carreras B A, Newman D E, Dobson I, et al.Evidence for self-organized criticality in a time series of electric power system blackouts[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(9): 1733-1740. [9] 孟仲伟, 鲁宗相, 宋靖雁. 中美电网的小世界拓扑模型比较分析[J]. 电力系统自动化, 2004, 28(15): 21-24, 29. [10] 丁明, 韩平平. 基于小世界拓扑模型的大型电网脆弱性评估算法[J]. 电力系统自动化, 2006, 30(8): 7-10, 40. [11] Motter A E, Lai Y C.Cascade-based attacks on complex networks[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(6 Pt 2): 065102. [12] Rosas-Casals M, Valverde S, Sole R V.Topological vulnerability of the European power grid under errors and attacks[J]. International Journal of Bifurcation and Chaos, 2007, 17(7): 2465-2475. [13] Albert R, Albert I, Nakarado G L.Structural vulnerability of the North American power grid[J]. Physical Review. E, Statistical, Nonlinear, and soft Matter Physics, 2004, 69(2 Pt 2): 025103. [14] Buldyrev S V, Parshani R, Paul G, et al.Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291): 1025-1028. [15] Chassin D P, Posse C.Evaluating North American electric grid reliability using the Barabasi-Albert network model[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 355(2): 667-677. [16] Kinney R, Crucitti P, Albert R, et al.Modeling cascading failures in the North American power grid[J]. European Physical Journal B-Condensed Matter and Complex Systems, 2005, 46(1): 101-107. [17] 曹一家, 陈晓刚, 孙可. 基于复杂网络理论的大型电力系统脆弱线路辨识[J]. 电力自动化设备, 2006, 26(12): 1-5, 31. [18] 陈晓刚, 孙可, 曹一家. 基于复杂网络理论的大电网结构脆弱性分析[J]. 电工技术学报, 2007, 22(10): 138-144. [19] 史进, 涂光瑜, 罗毅. 电力系统复杂网络特性分析与模型改进[J]. 中国电机工程学报, 2008, 28(25): 93-98. [20] 谢琼瑶, 邓长虹, 赵红生, 等. 基于有权网络模型的电力网节点重要度评估[J]. 电力系统自动化, 2009, 33(4): 21-24. [21] 丁明, 韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报, 2008, 28(10): 20-25. [22] 张国华, 张建华, 杨京燕, 等. 基于有向权重图和复杂网络理论的大型电力系统脆弱性评估[J]. 电力自动化设备, 2009, 29(4): 21-26. [23] 刘耀年, 术茜, 康科飞, 等. 基于电抗加权介数指标的电网脆弱线路识别[J]. 电力系统保护与控制, 2011, 39(23): 89-92, 100. [24] 徐林, 王秀丽, 王锡凡. 电气介数及其在电力系统关键线路识别中的应用[J]. 中国电机工程学报, 2010, 30(1): 33-39. [25] 徐林, 王秀丽, 王锡凡. 基于电气介数的电网连锁故障传播机制与积极防御[J]. 中国电机工程学报, 2010, 30(13): 61-68. [26] 程临燕, 张保会, 李光辉, 等. 采用有向电气介数的脆弱线路选取[J]. 西安交通大学学报, 2011, 45(6): 91-96. [27] 张富超, 谢成荣, 沈立新, 等. 基于源流路径链和输电介数的电网关键线路辨识[J]. 电力系统保护与控制, 2015, 43(21): 7-12. [28] 刘文颖, 梁才, 徐鹏, 等. 基于潮流介数的电力系统关键线路辨识[J]. 中国电机工程学报, 2013, 33(31): 90-98. [29] 梁才, 刘文颖, 但扬清, 等. 输电线路的潮流介数及其在关键线路识别中的应用[J]. 电力系统自动化, 2014, 38(8): 35-40. [30] 魏震波, 刘俊勇, 朱国俊, 等. 基于电网状态与结构的综合脆弱评估模型[J]. 电力系统自动化, 2009, 33(8): 11-14, 55. [31] 刘利民, 刘俊勇, 魏震波, 等. 基于协同效应分析的输电线路脆弱评估方法[J]. 电力自动化设备, 2016, 36(5): 30-37. [32] 李勇, 刘俊勇, 刘晓宇, 等. 基于潮流熵的电网连锁故障传播元件的脆弱性评估[J]. 电力系统自动化, 2012, 36(19): 11-16. [33] 张才斌, 游昊, 李本瑜, 等. 计及拓扑结构和运行状态的支路重要度评估方法[J]. 电力系统自动化, 2017, 41(7): 15-20. [34] 谭玉东, 李欣然, 蔡晔, 等. 基于动态潮流的电网连锁故障模型及关键线路识别[J]. 中国电机工程学报, 2015, 35(3): 615-622. |
|
|
|