|
|
A calculation method for three-dimensional electric fields of parallel and crossed DC simulation test line sections |
YANG Yong1, XIE Li2 |
1. He’nan University of Technology, Zhengzhou 450001;; 2. China Electric Power Research Institute, Beijing 100192 |
|
|
Abstract In order to verify the validity of theoretical research results of the electric fields around parallel and crossed HVDC transmission lines, DC simulation test line sections are usually used to perform the test experiment. Then, when the height of test line sections has been set, the effect of the length of test line sections on the electric fields needs to be studied to provide the reference for the geometric structure parameter design of test line sections. The analytical expressions of potential and electric field produced by the line section charge are proposed in this paper, and they are applied in the optimized analog charge method to resolve three-dimensional electric fields around parallel and crossed DC simulation test line sections. Through calculation and analysis, the following results are obtained. The method proposed in this paper can be used to calculate the electric fields around parallel and crossed HVDC transmission lines. The distribution law of electric field obtained in this paper can provide the technical support for further predicting the ion current electric field generated by the corona discharge occurring around the conductors of parallel and crossed HVDC transmission lines.
|
Received: 16 June 2020
|
|
|
|
Cite this article: |
YANG Yong,XIE Li. A calculation method for three-dimensional electric fields of parallel and crossed DC simulation test line sections[J]. Electrical Engineering, 2021, 22(1): 14-18.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2021/V22/I1/14
|
[1] 舒印彪, 刘泽洪, 高理迎, 等. ±800kV 6400MW特高压直流输电工程设计[J]. 电网技术, 2006, 30(1): 1-8. [2] 王东来, 卢铁兵, 崔翔, 等. 两回高压直流输电线路交叉跨越时地面合成电场计算[J]. 电工技术学报, 2017, 32(2): 77-84. [3] 邵方殷, 傅宾兰. 高压输电线路分裂导线表面和周围电场的计算[J]. 电网技术, 1984, 8(增刊1): 83-91. [4] SARMA M P, JANISCHEWSKYJ W. Electrostatic field of a system of parallel cylindrical conductors[J]. IEEE Transactions on Power Apparatus and Systems, 1969, PAS-88(7): 1069-1079. [5] 杨勇, 崔鼎新. 架空钢芯铝绞线参数对其表面电场的影响规律[J]. 高电压技术, 2010, 36(7): 1767-1772. [6] 杨勇, 刘元庆, 吴桂芳, 等. 架空输电导线表面电场的计算方法和分布规律[J]. 高电压技术, 2015, 41(5): 1644-1650. [7] 苏国政, 黄道春, 余世峰, 等. 特高压紧凑型输电线路工频电场强度计算[J]. 武汉大学学报(工学版), 2007, 40(3): 99-102. [8] 俞集辉, 周超. 复杂地势上超高压输电线路的工频电场[J]. 高电压技术, 2006, 32(1): 18-20. [9] 付启明, 袁建生. 绞线花纹导线表面电场强度计算与分析[J]. 高电压技术, 2007, 33(4): 77-79, 133. [10] 张家利, 姜震, 王德忠. 高压架空输电线下工频电场的数学模型[J]. 高电压技术, 2001, 27(6): 20-21. [11] 甘艳, 阮江军, 邬雄. 有限元法分析高压架空线路附近电场分布[J]. 高电压技术, 2006, 32(8): 52-55. [12] 杨勇. 高压直流模拟试验短线段下地面三维合成电场的计算和分析[J]. 高电压技术, 2013, 39(3): 655-660. [13] 卢铁兵, 肖刊, 张波, 等. 超高压输电线路铁塔附近的三维工频电场计算[J]. 高电压技术, 2001, 27(3): 24-26. [14] 邵方殷, 吴冬. 500kV输电线路全档距线下三维电场的计算[J]. 电网技术, 1984(2): 17-25. [15] LEE B Y, PARK J K, MYUNG S H, et al.An effective modeling method to analyze electric field around transmission lines and substations using a generalized finite line charge[J]. IEEE Transactions on Power Delivery, 1997, 12(3): 1143-1150. [16] 文武, 彭磊, 张小武, 等. 特高压大跨越架空线路三维工频电场计算[J]. 高电压技术, 2008, 34(9): 1821-1825. |
|
|
|