|
|
The thermal aging life assessment of cable insulating materials used in rail transit vehicles |
WANG Chunfeng1, ZHOU Jialong2, WANG Hongfeng1, LIANG Bin2, HAN Zhidong1,3 |
1. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040; 2. Zhongtian Technology Industrial Wire & Cable System Co., Ltd, Nantong, Jiangsu 226010; 3. Key Laboratory of Engineering Dielectrics and Its Application Ministry of Education, Harbin University of Science and Technology, Harbin 150080 |
|
|
Abstract This paper studies the thermal aging behavior of low smoking halogen-free flame retardant polyolefin (HFFRPO) materials used in rail transit vehicles and estimates the reliability of the insulation during the long service. Conventional thermal aging life assessment method is adopted to get the basic thermal aging data of HFFRPO. The thermal aging data is further processed on the basis of Boltzmann model and then the time parameter when the mechanical property parameters decrease to 50% is deduced, based on which the thermal aging life curve is fitted. In addition, the thermal aging life is also calculated according to the activation energy obtained by differential scanning calorimetry (DSC). The results show that the thermal aging life derived from the tensile strength is less than that derived from the elongation at break; the initial oxidation activation energy varies with the thermal aging degree, and the activation energy obtained by DSC method is not suitable to deduce the thermal aging life of HFFRPO materials but as an important reference index of the aging state of materials.
|
Received: 11 April 2021
|
|
|
|
Cite this article: |
WANG Chunfeng,ZHOU Jialong,WANG Hongfeng等. The thermal aging life assessment of cable insulating materials used in rail transit vehicles[J]. Electrical Engineering, 2021, 22(12): 14-21.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2021/V22/I12/14
|
[1] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. [2] 吴凡, 秦建雨, 程博, 等. 基于文献计量的中国电缆阻燃技术分析[J]. 合成树脂及塑料, 2019, 36(4): 85-90. [3] 卢燕芸, 顾申杰, 楼天杨. 时温平移法核级电缆热老化寿命评估及应用[J]. 核技术, 2014, 37(7): 89-94. [4] 孟鑫, 石靖, 裘志浩, 等. DSC加速老化试验方法在PP寿命估算中的应用[J]. 工程塑料应用, 2012, 40(5): 74-76. [5] 韩永进, 洪宁宁, 潘国梁, 等. 热重法评估橡胶绝缘材料的热老化寿命[J]. 电线电缆, 2017(6): 24-26. [6] 韩晔, 张盈锁, 翟晓军. 热重点斜法(TPS)概述[J]. 绝缘材料, 2003, 36(6): 51-54. [7] 高俊国, 孟睿潇, 胡海涛, 等. 电机定子绝缘老化寿命预测研究进展[J]. 电工技术学报, 2020, 35(14): 3065-3074. [8] 李宗辉, 陈林艳, 陈艺伟. 10kV交联聚乙烯电缆绝缘老化超低频介损试验的研究[J]. 电气技术, 2020, 21(10): 83-87. [9] 李智威, 孙利平. 基于电介质响应理论的10kV交联聚乙烯(XLPE)电力电缆绝缘诊断[J]. 电气技术, 2019, 20(2): 28-32. [10] 刘刚, 刘斯亮, 金尚儿, 等. 基于理、化、电特性的110kV XLPE绝缘电缆剩余寿命的综合评估[J]. 电工技术学报, 2016, 31(12): 72-79. [11] 姜青松, 梁斌, 周佳龙, 等. 热老化条件对机车电缆绝缘材料机械性能的影响[J]. 光纤与电缆及其应用技术, 2019(3): 1-3. [12] 郭茜. 低压交联聚乙烯电缆热老化试验及寿命评定[J]. 电线电缆, 1999(2): 42-43. [13] 房海霞, 叶永成, 白福臣. 茂金属线形低密度聚乙烯的热降解研究[J]. 中国塑料, 2004, 18(4): 51-54. [14] 胡丽斌, 陈杰, 李陈莹, 等. XLPE电缆绝缘加速热老化特性[J]. 绝缘材料, 2020, 53(2): 59-63. [15] 黄钰香, 庞承焕, 吴博, 等. 聚乙烯的热降解动力学研究[J]. 合成材料老化与应用, 2012, 41(4): 9-15. [16] 李建喜, 单永东, 曹丹. 核电用交联三元乙丙绝缘材料的活化能及寿命评价[J]. 绝缘材料, 2019, 52(12): 41-45. [17] 陆园, 战力英, 宫青海, 等. 抗氧剂的分类、作用机理及研究进展[J]. 塑料助剂, 2016(2): 43-50. |
|
|
|