|
|
Fault diagnosis of porcelain post insulator based on Gaussian mixture model of vibration signal spectrum |
JIAO Zonghan1, SHAO Xinming2,3, ZHENG Xin1, LIU Ronghai1 |
1. Electric Power Research Institute of Yunnan Power Grid Co., Ltd, Kunming 650217; 2. Graduate Workstation of Yunnan Power Grid Company, North China Electric Power University, Kunming 650217; 3. Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei 071003 |
|
|
Abstract A vibration signal feature extraction method based on Gaussian mixture model (GMM) of vibration signal spectrum is proposed, and the extreme learning machine (ELM) optimized by particle swarm optimization (PSO) is used to realize fault state recognition and classification. Firstly, the frequency spectrum of the vibration signal of porcelain post insulator is obtained. Then, Gaussian probability density function and expectation maximization algorithm (EM) are used to divide the frequency spectrum into three modes. Three characteristic parameters, standard deviation σ, weight coefficient α and mean μ, can be obtained for each mode to characterize the modal bandwidth, modal component proportion and modal center frequency. Finally, the characteristic parameters of each mode are input into the classification model as eigen values to realize state recognition and classification.
|
Received: 28 September 2020
|
|
|
|
Cite this article: |
JIAO Zonghan,SHAO Xinming,ZHENG Xin等. Fault diagnosis of porcelain post insulator based on Gaussian mixture model of vibration signal spectrum[J]. Electrical Engineering, 2021, 22(6): 36-42.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2021/V22/I6/36
|
[1] 王兴照, 周大洲, 王宁. 基于热红外成像技术的绝缘子故障分类研究[J]. 电气技术, 2016, 17(11): 140-142, 150. [2] 王少华, 李特, 周象贤, 等. 变电站瓷支柱绝缘子断裂故障分析及预防措施[J]. 电瓷避雷器, 2016(5): 35-38. [3] 赵江辉, 岳红利. 一种瓷质绝缘子故障状态判定方法介绍[J]. 电气技术, 2017, 18(1): 120-122. [4] 付天孟, 刘广兴, 蒲英俊, 等. 浅谈声振动检测技术在瓷支柱绝缘子中的应用[J]. 山东工业技术, 2019(6): 186, 188. [5] 刘立帅, 郭晨鋆, 王黎明, 等. 基于频域热特征成像的复合绝缘子缺陷检测方法[J]. 中国电机工程学报, 2019, 39(8): 2498-2505. [6] 韦晓星, 孙勇, 陈如龙, 等. 水平安装支柱瓷绝缘子断裂故障及弯曲负荷分析[J]. 电瓷避雷器, 2017(2): 156-163. [7] 李晓红, 郭慧英, 刘云, 等. 基于振动法检测的瓷绝缘子损伤探讨[J]. 高压电器, 2009, 45(1): 101-103. [8] 刘冠辰, 王孟, 郑欣, 等. 基于振动声学对瓷支柱绝缘子强度的检测技术[J]. 高压电器, 2015, 51(9): 44-48. [9] 杨楠, 崔家展, 周峥, 等. 基于混合高斯分布的风功率横向时间序列概率密度建模研究[J]. 水电能源科学, 2016, 34(11): 213-216. [10] 王万平, 廖胜, 邢廷文. EM框架下实现被动测距的状态估计和参数学习[J]. 红外与激光工程, 2012, 41(7): 1708-1713. [11] 潘华贤, 程国建, 蔡磊. 极限学习机与支持向量机在储层渗透率预测中的对比研究[J]. 计算机工程与科学, 2010, 31(2): 131-134. [12] 邓万宇, 张莎莎, 刘光达, 等. 极限学习机中隐含层节点选择研究[J]. 信息技术, 2018, 42(8): 1-3, 7. [13] 冯林, 刘胜蓝, 张晶, 等. 高维数据中鲁棒激活函数的极端学习机及线性降维[J]. 计算机研究与发展, 2014, 51(6): 1331-1340. [14] 李宁. 粒子群优化算法的理论分析与应用研究[D]. 武汉: 华中科技大学, 2006. [15] 汪明先, 吴建德, 王晓东. PSO-ELM的浆体管道临界淤积流速预测模型研究[J]. 传感器与微系统, 2017, 36(3): 66-69. |
|
|
|