|
|
Study on pyrolysis mechanism of epoxy resin for composite insulator core rod |
ZHANG Xingyu1, ZHANG Xiaoming1, CHEN Yaqi1, CHI Jiakai2, XING Yunqi2 |
1. Electric Power Research Institute, State Grid Inner Mongolia Eastern Electric Power Co., Ltd, Hohhot 010000; 2. School of Electrical Engineering, Hebei University of Technology, Tianjin 300130 |
|
|
Abstract In order to reveal the pyrolysis micro-mechanism of the core rod epoxy resin material, and to study the effects of temperature, temperature rise rate and partial discharge active products on its pyrolysis process, this paper establishes a bisphenol A epoxy resin interface model based on the ReaxFF numerical simulation method. The pyrolysis process is simulated, and the types and changing trends of small molecule products in the pyrolysis process and their micro pyrolysis mechanism are analyzed. The results show that the temperature increase in the pyrolysis process of epoxy resin deepens its pyrolysis degree; the increase of the temperature rise rate reduces the initial pyrolysis temperature; the pyrolysis path changes under the action of the active product, and the thermal stability decreases.
|
Received: 12 January 2021
|
|
|
|
Cite this article: |
ZHANG Xingyu,ZHANG Xiaoming,CHEN Yaqi等. Study on pyrolysis mechanism of epoxy resin for composite insulator core rod[J]. Electrical Engineering, 2022, 23(2): 1-6.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2022/V23/I2/1
|
[1] 罗真海, 陈雄一, 肖定辉, 等. 合成绝缘子玻璃绝缘子瓷绝缘子的综合技术经济比较[J]. 广东电力, 1996, 9(3): 41-44. [2] SUNDARARAJAN R, GORUR R S.Effect of insu-lator profiles on DC flashover voltage under polluted conditions. A study using a dynamic arc model[J]. IEEE Transactions on Dielectrics & Electrical Insu-lation, 1994(1): 124-132. [3] 刘立帅, 郭晨鋆, 王黎明, 等. 基于频域热特征成像的复合绝缘子缺陷检测方法[J]. 中国电机工程学报, 2019, 39(8): 2498-2505. [4] 张小钒. 变电站绝缘子红外检测技术分析[J]. 电气技术, 2020, 21(11): 106-109, 113. [5] 梁曦东. 500kV合成绝缘子的研究[D]. 北京: 清华大学, 1990: 28-73. [6] 谢从珍, 曾磊磊, 甘永叶, 等. 基于热重红外联用的复合绝缘子芯棒热解特性研究[J]. 电工技术学报, 2018, 33(增刊1): 227-233. [7] 谢伟, 杨征, 程显, 等. 环氧树脂材料热氧老化特性研究[J]. 电工技术学报, 2020, 35(20): 4397-4404. [8] 梁曦东, 高岩峰. 复合绝缘子酥朽断裂研究(一): 酥朽断裂的主要特征、定义及判据[J]. 中国电机工程学报, 2016, 36(17): 4778-4786. [9] 张福林, 张善钢. 复合绝缘子运行过程中芯棒出现脆断原因初析[J]. 电网技术, 2000, 24(1): 50-52. [10] 向奕同, 王永华. 干燥带对变电站支柱绝缘子电场分布的影响研究[J]. 电气技术, 2020, 21(8): 87-92. [11] TOURREL C D, PARGAMIN L, THEVENET G, et al.“Brittle fracture” of composite insulatoprs: why and how they occur[C]//2000 Power Engineering Society Summer Meeting, Seattle, USA, 2000, 4: 2569-2574. [12] 秦国富. 复合绝缘子界面胶接过程的分析[J]. 电瓷避雷器, 2005(4): 12-14. [13] ODEGARD G M, JENSEN B D, GOWTHAM S, et al.Predicting mechanical response of crosslinked epoxy using ReaxFF[J]. Chemical Physics Letters, 2014, 591:175-178. [14] DIAO Zhijun, ZHAO Yuemin, CHEN Bo, et al.ReaxFF reactive force field for molecular dynamics simulations of epoxy resin thermal decomposition with model compound[J]. Journal of Analytical & Applied Pyrolysis, 2013, 104: 618-624. [15] 李立浧, 饶宏, 董旭柱, 等. 计算高电压工程学的思考与展望[J]. 高电压技术, 2018, 44(11): 3441-3453. [16] 韩智云, 邹亮, 辛喆, 等. 直流GIL绝缘子环氧树脂/碳纳米管复合涂层关键物理性能的分子动力学模拟[J]. 电工技术学报, 2018, 33(20): 4692-4703. [17] GILLESPIE D T.Stochastic simulation of chemical kinetics[J]. Annual Review of Physical Chemistry, 2007, 58: 35-55. [18] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. [19] MARIUT L.Temperature gradient effect on partial discharge activity-modelling and simulation[C]//2012 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, 2012. [20] ASHRAF C, VASHISTH A, BAKIS C E, et al.Reactive molecular dynamics simulations of atomic oxygen impact on epoxies with different chemistries[J]. Journal of Physical Chemistry C, 2019, 123(24): 15145-15156. [21] 钟力生, 李盛涛, 徐传骧, 等. 工程电介质物理与介电现象[M]. 南京: 西安交通大学出版社, 2013. [22] 黄旭炜, 鲁旭, 韩帅, 等. 风机叶片用PU改性乙烯基树脂热解过程的ReaxFF反应分子动力学模拟[J]. 高分子学报, 2015(10): 1133-1142. |
|
|
|