|
|
A coordinated power control scheme of an energy base based on photovoltaic, tower solar and energy storage |
SUN Haicui |
East China Electric Power Design Institute Co.,Ltd, Shanghai 200063 |
|
|
Abstract The development and utilization of solar energy is an important way to promote the realization of carbon neutrality and emission peak. Based on the energy source consisting of photovoltaic power station, tower solar thermal power station and energy storage device, with the periodicity of solar energy, a control scheme for the coordinated collection and conversion of energy by photovoltaic, solar thermal and energy storage in different time periods to track and schedule load instructions, is proposed in this study. According to the characteristics of energy production and transmission, it is divided into the leading period of photovoltaic with storage energy and the leading period of solar thermal power generation. In the period of good solar resources, the power coordination control scheme based on the maximum power point control of photovoltaic power station is adopted, and the energy storage and solar thermal power station are coordinated. In the absence of solar resources, the control scheme of power regulation by solar thermal power station is adopted. It can effectively smooth the random fluctuation of photovoltaic power station and ensure the stability and reliability of power output of energy base power supply.
|
Received: 11 June 2024
|
|
|
|
Cite this article: |
SUN Haicui. A coordinated power control scheme of an energy base based on photovoltaic, tower solar and energy storage[J]. Electrical Engineering, 2024, 25(11): 22-29.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I11/22
|
[1] DU Ershun, ZHANG Ning, HODGE B M, et al.The role of concentrating solar power toward high renewable energy penetrated power systems[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6630-6641. [2] GIACONIA A, GRENA R.A model of integration between PV and thermal CSP technologies[J]. Solar Energy, 2021, 224: 149-159. [3] 苗淼, 刘赛, 施涛, 等. 光伏光热联合发电基地并网优化调度模型[J]. 中国电力, 2019, 52(4): 51-58. [4] 林克曼, 王召珩, 吴峰, 等. 光伏-光热联合发电系统动态建模与功率协调控制[J]. 电力自动化设备, 2021, 41(9): 110-117. [5] 张涛, 刘伉, 陶然, 等. 计及热惯性及光热电站的综合能源系统优化[J]. 电力建设, 2023, 44(1): 109-117. [6] 郑舒, 赵景涛, 刘明祥. 基于K-means聚类算法的风电光伏光热互补发电机组调度方法[J]. 电机与控制应用, 2023, 50(2): 61-66. [7] 孔令国, 王嘉祺, 韩子娇, 等. 基于权重调节模型预测控制的风-光-储-氢耦合系统在线功率调控[J]. 电工技术学报, 2023, 38(15): 4192-4207. [8] 缪雅慧, 焦燕, 徐浩. 含储能的多能互补系统功率控制方案[J]. 电气技术, 2024, 25(5): 75-80. [9] 孙海翠, 孙漾, 周梦婕, 等. 一种基于智慧热电能源系统源端的协调控制方案[J]. 四川电力技术, 2023, 46(2): 45-51. [10] 郭怿, 明波, 黄强, 等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报, 2023, 38(9): 2350-2363. [11] 刘晓艳, 王珏, 姚铁锤, 等. 基于卫星遥感的超短期分布式光伏功率预测[J]. 电工技术学报, 2022, 37(7): 1800-1809. [12] 刘琼, 田晓梨, 花凌锋, 等. 基于G-L-R模型的光伏发电功率预测[J]. 电气技术, 2020, 21(8): 11-15, 21. [13] 陈振祥, 林培杰, 程树英, 等. 基于K-means++和混合深度学习的光伏功率预测[J]. 电气技术, 2021, 22(9): 7-13, 33. [14] 谢伟, 李官军, 方陈, 等. 含钠硫电池储能系统的微网多时间尺度能量管理策略[J]. 电网与清洁能源, 2016, 32(10): 160-166. [15] 熊焰, 吴杰康, 王强, 等. 风光气储互补发电的冷热电联供优化协调模型及求解方法[J]. 中国电机工程学报, 2015, 35(14): 3616-3625. [16] 陶安琪, 柯长青, 谢红接, 等. 北极地区夏季太阳辐照度变化研究[J]. 光谱学与光谱分析, 2012, 32(8): 2037-2042. |
|
|
|