|
|
|
| Optimal allocation of distributed energy storage in distribution networks with high penetration of renewable energy generation |
| ZHANG Yu1, WU Rui1, TONG Wei2, FANG Wei2 |
1. State Grid Anhui Guoyan Electric Power Company, Bozhou, Anhui 233600; 2. Key Laboratory of Power Electronics & Motion Control, Anhui Education Department, Anhui University of Technology, Ma’anshan, Anhui 243000 |
|
|
|
|
Abstract High penetration of the distributed renewable energy causes several problems in the grid. For a coordinated operation of wind, solar, and energy storage in a distribution network, an optimal allocation method of energy storage based on an improved multi-objective particle swarm optimization is proposed in this article. Firstly, an optimization model considering voltage fluctuation, grid-connected power fluctuation rate and energy storage rated capacity is constructed. Secondly, an inertia weight dynamic adjustment mechanism based on particle similarity is proposed to enhance the global search ability. The file update method that integrates the cyclic crowding sorting and cross mutation strategy maintains the Pareto frontier and avoids the risk of local convergence. Thus, the technique for order preference by similarity to an ideal solution (TOPSIS) hybrid decision model is used to select the optimal configuration scheme from the non-inferior solution set. Finally, the proposed method is tested on the IEEE 33-bus distribution network through four examples. The simulation results show that compared with the traditional particle swarm optimization and non-dominating sorting genetic algorithm Ⅱ (NSGA-Ⅱ), the proposed method reduces the voltage/power fluctuation and the energy storage configuration capacity, which verifies its effectiveness.
|
|
Received: 04 August 2025
|
|
|
|
| Cite this article: |
|
ZHANG Yu,WU Rui,TONG Wei等. Optimal allocation of distributed energy storage in distribution networks with high penetration of renewable energy generation[J]. Electrical Engineering, 2025, 26(12): 16-23.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I12/16
|
[1] 张萍, 陆霞, 孟庆鹤. 基于多策略麻雀搜索算法的微电网容量优化配置[J]. 电气技术, 2023, 24(1): 1-9. [2] 李鹏, 徐伟娜, 周泽远, 等. 基于改进万有引力搜索算法的微网优化运行[J]. 中国电机工程学报, 2014, 34(19): 3073-3079. [3] LI Q, CHOI S S, YUAN Y, et al.On the determination of battery energy storage capacity and short-term power dispatch of a wind farm[J]. IEEE Transactions on Sustainable Energy, 2011, 2(2): 148-158. [4] 陆秋瑜, 马千里, 魏韡, 等. 基于置信容量的风场配套储能容量优化配置[J]. 电工技术学报, 2022, 37(23): 5901-5910. [5] XU Xianfeng, WANG Ke, MA Wenhao, et al.Multi- objective particle swarm optimization algorithm based on multi-strategy improvement for hybrid energy storage optimization configuration[J]. Renewable Energy, 2024, 223: 120086. [6] 罗金满, 刘丽媛, 刘飘, 等. 考虑源网荷储协调的主动配电网优化调度方法研究[J]. 电力系统保护与控制, 2022, 50(1): 167-173. [7] 杜鹏, 米增强, 贾雨龙, 等. 基于网损灵敏度方差的配电网分布式储能位置与容量优化配置方法[J]. 电力系统保护与控制, 2019, 47(6): 103-109. [8] 李龙澍, 张效见. 一种新的自适应惯性权重混沌PSO算法[J]. 计算机工程与应用, 2018, 54(9): 139-144. [9] BABU V V, PREETHA ROSELYN J, SUNDARAVADIVEL P.Multi-objective genetic algorithm based energy management system considering optimal utilization of grid and degradation of battery storage in microgrid[J]. Energy Reports, 2023, 9: 5992-6005. [10] SWARNKAR A, GUPTA N, NIAZI K R.Adapted ant colony optimization for efficient reconfiguration of balanced and unbalanced distribution systems for loss minimization[J]. Swarm and Evolutionary Computation, 2011, 1(3): 129-137. [11] 匡洪海, 徐雨淏, 李子龙, 等. 计及需求响应的海岛微电网双层优化运行[J]. 电气技术, 2025, 26(3): 15-21, 29. [12] JI Bingxiang, LIU Honghao, CHENG Peng, et al.Phased optimization of active distribution networks incorporating distributed photovoltaic storage system: a multi-objective coati optimization algorithm[J]. Journal of Energy Storage, 2024, 91: 112093. [13] LU Xiaoying, WANG Haoyu.Optimal sizing and energy management for cost-effective PEV hybrid energy storage systems[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3407-3416. [14] 曹锦, 陆飞, 江友华. 基于改进粒子群算法的配电网多目标优化控制[J]. 电网与清洁能源, 2022, 38(5): 95-103. [15] 闫群民, 董新洲, 穆佳豪, 等. 基于改进多目标粒子群算法的有源配电网储能优化配置[J]. 电力系统保护与控制, 2022, 50(10): 11-19. [16] WEN Shuli, LAN Hai, FU Qiang, et al.Economic allocation for energy storage system considering wind power distribution[J]. IEEE Transactions on Power Systems, 2014, 30(2): 644-652. [17] 孙淑琴, 吴晨悦, 颜文丽, 等. 基于随机衰减因子粒子群的最优潮流计算[J]. 电力系统保护与控制, 2021, 49(13): 43-52. [18] 苏适, 周立栋, 陆海, 等. 基于改进混沌粒子群算法的多源独立微网多目标优化方法[J]. 电力系统保护与控制, 2017, 45(23): 34-41. [19] 李练兵, 王兰超, 景睿雄, 等. 基于改进免疫粒子群算法的混合储能容量优化[J/OL]. 电源学报, 1-14 (2025-01-03)[2025-08-04]. https://link.cnki.net/urlid/12.1420.TM.20240102.1714.004. [20] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容[J]. 电网技术, 2014, 38(12): 3405-3411. |
|
|
|