|
|
Pre-stress modal analysis of shaft system torsional vibration for a large steam turbine generator set |
YANG Junjie, LI Juan, QIAO Di |
College of Automation, Beijing Information Science and Technology University, Beijing 100192 |
|
|
Abstract Modal analysis is the basis for studying the torsional vibration characteristics of the generator set shaft system. Current researches mainly focus on modal analysis under conventional shaft system constraints or the characteristic analysis of key parts of the shaft system under certain operating conditions. However, there is insufficient research on the impact of actual operating conditions on the modal characteristics of the shaft system. Taking the shaft system of a 600 MW steam turbine generator set as the research object, firstly, a three-dimensional model of the shaft system is established using the family table parameterization function of Creo modeling software. Then, theoretical analysis and finite element simulation are performed on the conventional natural modes, rotational speed pre-stress modes, thermal pre-stress modes, and modes under the combined effect of rotational speed and thermal pre-stress. The simulation results show that when rotational speed or thermal pre-stress acts separately, the natural frequencies of the shaft system decrease. When both rotational speed and thermal pre-stress act together, the natural frequencies of the shaft system are lower than those under no pre-stress conditions. However, under the premise that the rotational speed is at the nominal operating speed, a phenomenon is observed where the natural frequencies increase gradually with the rise in temperature, compared with the case where only temperature pre-stress is applied. This provides a reference for the design of the shaft system considering actual operating conditions.
|
Received: 20 January 2025
|
|
|
|
Cite this article: |
YANG Junjie,LI Juan,QIAO Di. Pre-stress modal analysis of shaft system torsional vibration for a large steam turbine generator set[J]. Electrical Engineering, 2025, 26(7): 32-39.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I7/32
|
[1] 郑庆帅. 汽轮发电机组扭振在线监测系统的研究[D]. 北京: 华北电力大学, 2023. [2] 高本锋, 刘培鑫, 刘王锋, 等. 直驱风电场并网对火电机组次同步谐振影响[J]. 电工技术学报, 2024, 39(11): 3308-3322. [3] 张路, 陈军, 赵启, 等. 新疆电网次同步振荡控制系统及其测试方法研究[J]. 电气技术, 2022, 23(12): 31-37. [4] 张建军, 岳啸鸣, 赵克斌, 等. 一起330 MW汽轮发电机转子绕组短路故障分析及处理[J]. 电气技术, 2023, 24(3): 69-72. [5] HE Xi, GU Yujiong. Analysis on torsional vibration characteristics of turbo-generator units based on finite element method[J]. Advanced Materials Research, 2014, 915/916: 22-25. [6] 程胜杰, 李娟, 焦邵华. 传递矩阵法验证发电机轴系扭振特性[J]. 电气技术, 2019, 20(10): 19-24. [7] 郭庆丰, 翟彦恺, 魏红阳, 等. 10 MW空气透平转子动力学特性研究[J]. 汽轮机技术, 2023, 65(5): 371-372, 396. [8] 乔迪, 李娟, 杨俊杰. 汽轮发电机组轴系扭振危险截面分析[J]. 北京信息科技大学学报(自然科学版), 2024, 39(5): 32-39. [9] 应光耀, 刘淑莲, 蔡文方, 等. 汽轮机转子扭振频率影响因素分析[J]. 汽轮机技术, 2020, 62(6): 421-423. [10] 李汪繁, 徐佳敏. 600 MW级汽轮发电机组联轴器强度分析[J]. 发电设备, 2021, 35(5): 309-312, 318. [11] LI Yuan, LIU Yi, LIU Heng, et al.Analysis of torsional dynamic characteristics of turbo-generator rotor based on cross scale modeling method[J]. Journal of Vibration Engineering & Technologies, 2022, 10(3): 1055-1072. [12] 庞智元. 1000 MW机组轴系扭转振动特性仿真分析[D]. 沈阳: 沈阳工程学院, 2021. [13] LIU Yichang, TIAN Chunlin, LIU Tao, et al.Modal analysis of worm and worm gear based on ANSYS Workbench[J]. MATEC Web of Conferences, 2015, 34: 02014. [14] 潘东煦, 顾剑锋, 陈睿恺, 等. 30Cr2Ni4MoV低压转子钢不同微观组织下的力学性能[J]. 金属热处理, 2011, 36(5): 1-4. [15] 刘峻华. 大型汽轮发电机组轴系扭振研究[D]. 武汉: 华中科技大学, 2006. [16] 常雷. 高速电主轴动态特性及多工况条件对其影响的研究[D]. 天津: 天津工业大学, 2021. [17] 党蒲妮, 吕锦锋, 刘江华, 等. 预载荷及热环境下典型壁板结构的模态分析[C]//第十五届全国结构振动与动力学学术研讨会暨第三届全国冲击及防护工程学术研讨会, 厦门, 2023. |
|
|
|