|
|
|
| Research on IGBT life prediction method based on improved particle swarm optimization-particle filter model |
| LIU Dongjing1,2, LI Tao1,2, XIAO Yu1,2, ZHOU Xiaoshu3 |
1. Guangxi Education Department Key Laboratory of Microelectronic Packaging and Assembly Technology, Guilin, Guangxi 541004; 2. Nanning Research Institute of Guilin University of Electronic Technology, Nanning 530031; 3. Guilin Julian Technology Co., Ltd, Guilin, Guangxi 541004 |
|
|
|
|
Abstract To enhance the prediction accuracy of insulated gate bipolar transistor (IGBT) lifetime, reduce maintenance costs, and mitigate system failure risks, a novel IGBT lifetime prediction method integrating the improved particle swarm optimization (IPSO) and particle filter (PF) is proposed. By selecting the collector-emitter on-state voltage (Vce_on) as the degradation characteristic parameter, and based on the publicly available historical Vce_on dataset from NASA, the degradation model is fitted using Matlab to determine model parameters, thereby constructing the state equation and observation equation. Adaptive weights and tangent functions are employed to optimize particle swarm optimization parameters, addressing the issues of premature convergence in the early stage and proneness to local optima in the later stage. An IPSO-PF model is established, where IPSO’s optimal parameter search dynamically adjusts the particle weights in both the prediction phase and resampling phase of PF,enabling particles to better approximate the posterior probability distribution of the system. The failure threshold of Vce_on is set to achieve accurate IGBT lifetime prediction. Simulation analysis indicates that the average relative accuracy of the IPSO-PF model reaches 0.971 1, which is 20.44%, 6.99%, and 5.37% higher than that of the PF, unscented Kalman particle filter (UPF), and hunter-prey optimizer particle filter (HPO-PF) models, respectively, which demonstrates that the IPSO-PF model can effectively enhance the accuracy of IGBT lifetime prediction. To verify the effectiveness of each improved module on the model, ablation experiments are designed, and the results confirm that each improved module has effectively promoted the performance of the IPSO-PF model.
|
|
Received: 18 July 2025
|
|
|
|
| Cite this article: |
|
LIU Dongjing,LI Tao,XIAO Yu等. Research on IGBT life prediction method based on improved particle swarm optimization-particle filter model[J]. Electrical Engineering, 2026, 27(1): 20-27.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2026/V27/I1/20
|
[1] 任宏宇, 余瑶怡, 杜雄, 等. 基于优化长短期记忆神经网络的IGBT寿命预测模型[J]. 电工技术学报, 2024, 39(4): 1074-1086. [2] 张军, 张犁, 成瑜. IGBT模块寿命评估研究综述[J]. 电工技术学报, 2021, 36(12): 2560-2575. [3] 赖伟, 陈民铀, 冉立, 等. 老化实验条件下的IGBT寿命预测模型[J]. 电工技术学报, 2016, 31(24): 173-180. [4] 刘子英, 朱琛磊. 基于Elman神经网络模型的IGBT寿命预测[J]. 半导体技术, 2019, 44(5): 395-400. [5] 白梁军, 黄萌, 饶臻, 等. 基于GARCH模型的IGBT寿命预测[J]. 中国电机工程学报, 2020, 40(18): 5787-5796. [6] 史业照, 郭斌, 郑永军. 基于LSTM网络的IGBT寿命预测方法研究[J]. 中国测试, 2024, 50(2): 54-58, 65. [7] 黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. [8] 万庆祝, 于佳松, 佟庆彬, 等. 基于Bo-BiLSTM网络的IGBT老化失效预测方法[J]. 电气技术, 2024, 25(3): 1-10. [9] REIGOSA P D, WANG Huai, YANG Yongheng, et al.Prediction of bond wire fatigue of IGBTs in a PV inverter under a long-term operation[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(10): 7171-7182. [10] 许文强. 基于改进粒子滤波算法的IGBT寿命预测方法研究[D]. 西安: 西安理工大学, 2023: 17-45. [11] 杨媛, 许文强, 邹圣雷, 等. 低数据样本的IGBT寿命预测方法: CN116629083A[P].2023-08-22. [12] ZHANG Jinli, HU Jinbao, YOU Hailong, et al.A remaining useful life prediction method of IGBT based on online status data[J]. Microelectronics Reliability, 2021, 121: 114124. [13] 丁雪妮, 陈民铀, 赖伟, 等. 多芯片并联IGBT模块老化特征参量甄选研究[J]. 电工技术学报, 2022, 37(13): 3304-3316, 3340. [14] 罗哲雄, 周望君, 陆金辉, 等. 双面散热汽车IGBT模块热测试方法研究[J]. 电气技术, 2022, 23(12): 24-30. [15] LI Wanping, WANG Bixuan, LIU Jingcun, et al.IGBT aging monitoring and remaining lifetime prediction based on long short-term memory (LSTM) networks[J]. Microelectronics Reliability, 2020, 114: 113902. [16] 张金萍, 薛治伦, 陈航, 等. 基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测[J]. 半导体技术, 2024, 49(4): 373-379. [17] CHOI U M, MA Ke, BLAABJERG F.Validation of lifetime prediction of IGBT modules based on linear damage accumulation by means of superimposed power cycling tests[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3520-3529. [18] 唐圣学, 张继欣, 姚芳, 等. IGBT模块寿命预测方法研究综述[J]. 电源学报, 2023, 21(1): 177-194. [19] HAQUE M S, CHOI S, BAEK J.Auxiliary particle filtering-based estimation of remaining useful life of IGBT[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2693-2703. [20] WANG Xiang, WEI Weiwei, ZHANG Yanhui, et al.A data-driven lifetime prediction method for thermal stress fatigue failure of power MOSFETs[J]. Energy Reports, 2022, 8: 467-473. |
|
|
|