|
|
|
| Dedicated protection scheme for tap changer of high voltage direct current transmission converter transformer |
| MO Pinhao, GU Qiaogen, ZHANG Xiaoyu, ZHENG Chao, SUN Zhongmin |
| NR Electric Co., Ltd, Nanjing 211102 |
|
|
|
|
Abstract Converter transformers (abbreviated as converters) are the core equipments in high voltage direct current (HVDC) transmission systems, which determine the security and stability of the power system. In recent years, there have been multiple incidents of converter damage and DC shutdown caused by the failures of tap changer for converter. From the perspective of relay protection, traditional converter transformer protection-schemes have poor maneuverability and weak sensitivity to the failures of tap changer. Based on the study of the fault mechanism of tap changer, a dedicated protection scheme for tap changer of converter is proposed. This scheme collects and utilizes both the electrical and non-electrical information of the converter, introduces a sine signal half cycle absolute value integration algorithm, and consists of a fast differential protection criterion that takes into account the tap information and a non-electrical quantity detection criterion. Theoretical analysis and simulation experiments show that, without reducing the reliability, this scheme has a faster action speed of 15 ms compared to traditional protection of converter, and can solve the problem of converter damage caused by the faults of tap changer due to long cutting time.
|
|
Received: 09 July 2025
|
|
|
|
| Cite this article: |
|
MO Pinhao,GU Qiaogen,ZHANG Xiaoyu等. Dedicated protection scheme for tap changer of high voltage direct current transmission converter transformer[J]. Electrical Engineering, 2026, 27(1): 28-34.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2026/V27/I1/28
|
[1] 孙华芳. HVDC单极大地回线运行方式对变压器的影响及防范措施[J]. 发电与空调, 2013, 34(1): 35-38. [2] 艾红杰, 严兵, 贾轩涛, 等. 基于DPS-3000平台的±800kV特高压直流输电工程控制保护配合逻辑分析[J]. 电气技术, 2016, 17(4): 43-46. [3] 范子强, 许朋见, 吴庆范, 等. DPS-5000直流输电控制保护系统设计方案[J]. 电气技术, 2021, 22(5): 73-77. [4] 周晓风, 付艳, 崔晨, 等. 提高分接开关可靠性的直流输电控制策略优化[J]. 电气技术, 2020, 21(9): 54-58, 65. [5] 王永平, 卢东斌, 王振曦, 等. 适用于分层接入的特高压直流输电控制策略[J]. 电力系统自动化, 2016, 40(21): 59-65. [6] 莫品豪, 郑超, 程骁, 等. 高压直流输电系统直流滤波器接地故障机理分析[J]. 电力系统自动化, 2018, 42(20): 171-175. [7] 林磊, 陈川, 胡鑫, 等. 不同故障下特高压换流变压器差动保护动作特性分析[J]. 电力系统保护与控制, 2017, 45(21): 123-133. [8] 王海波. 一种新型变压器稳态比率差动保护系数校验方法[J]. 电气技术, 2022, 23(10): 80-85. [9] 卢东斌, 李凤祁, 姚其新, 等. 高压直流输电换流变压器分接头调节的死区角度和死区电压分析[J]. 电力系统自动化, 2023, 47(24): 165-174. [10] 吕鹏飞, 梁志峰, 阮思烨, 等. 南桥换流站500kV换流变压器故障保护动作分析[J]. 电力系统自动化, 2013, 37(16): 125-128. [11] 张杰, 罗隆福, AGGARWAL R K, 等. 新型换流变压器差动保护原理[J]. 电力系统自动化, 2011, 35(4): 46-50. [12] 黄少锋, 申洪明, 刘玮, 等. 交直流互联系统对换流变压器差动保护的影响分析及对策[J]. 电力系统自动化, 2015, 39(23): 158-164. [13] 姚东晓, 邓茂军, 倪传坤, 等. 变压器多侧励磁涌流产生机理及对差动快速动作区影响研究[J]. 电力系统保护与控制, 2016, 44(5): 36-41. [14] 张文, 周翔胜, 宋述波, 等. 一种云广特高压换流变保护配置无冗余问题改进方法[J]. 电力系统保护与控制, 2014, 42(14): 151-154. [15] 陈晓云, 张伟光. 220kV变压器重瓦斯事故分析及预防措施[J]. 电气技术, 2018, 19(1): 94-96. |
|
|
|