|
|
Analysis of explosive melting fault of high voltage current-limiting fuse of pad-mounted transformer for wind turbine applications |
Yuan Yizhuan, Zhang Xiaofeng, Mao Qiwu, Zhang Weitao, Zhong Zhijin |
Pearl Electric Co., Ltd, Guangzhou 511400 |
|
|
Abstract One of the major threats to safe operation of the pad-mounted transformer is the failure of high voltage current-limiting fuse such as explosion melting. In view of explosive melting problem of high voltage current-limiting fuse of pad-mounted transformer for wind turbine applications, the main failure cause is analyzed. One reason is that the design and selection did not meet the requirements for reducing fuse capacity. The second reason is oil seeping at copper sheet of lead wire. The third reason is that heat accumulation for a long time causes accelerated aging of insulation. The temperature rise test of the fuse with rated current of 31.5A indicates that it is possible that the internal temperature of the high voltage current-limiting fuse is 25K higher than the external oil temperature. That is, when the external oil temperature is at or above 75℃, the temperature in the dry cylinder will reach 100℃. It is suggested that the design should be reasonably reduced capacity according to the actual installation of high voltage current-limiting fuse. Taking 1600kVA pad-mounted transformer as an example, the improvement example of design and selection is presented. The study of this paper has important reference significance for the application of high voltage current-limiting fuse.
|
Received: 17 May 2018
Published: 31 August 2018
|
|
|
|
Cite this article: |
Yuan Yizhuan,Zhang Xiaofeng,Mao Qiwu等. Analysis of explosive melting fault of high voltage current-limiting fuse of pad-mounted transformer for wind turbine applications[J]. Electrical Engineering, 2018, 19(8): 63-67.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2018/V19/I8/63
|
[1] 赵国君, 肖勋. 浅谈风电用组合式变压器的设计[J]. 变压器, 2007(5): 18-21. [2] 张学, 景凤梅. 1.5MW风力发电机组用35kV组合式变压器[J]. 变压器, 2012, 49(8): 5-8. [3] 袁晓娴. 基于LabVIEW的熔断器仿真及测试系统设计[D]. 大连: 大连理工大学, 2015. [4] 毛柳明, 文远芳, 周挺. 高压限流熔断器熔断过程及过电压研究[J]. 高电压技术, 2008(4): 820-823. [5] 张良, 徐丙垠. 配电网分支线保护的配置与整定[J]. 电网技术, 2016, 40(5): 1589-1594. [6] 李兵, 丁顺清, 徐峰, 等. 配网PT熔断器故障分析及故障监测系统研究[J]. 电气技术, 2016, 17(5): 59-62. [7] 王季梅. 高压交流熔断器及其应用[M]. 北京: 机械工业出版社, 2006. [8] 刘志远, 王彤, 孙超, 等. 石英砂熔断器的弧前时间- 电流特性[J]. 高电压技术, 2018, 44(2): 366-371. [9] 中华人民共和国机械行业标准. JB/T 10217—2013 组合式变压器[S]. 北京: 机械工业出版社, 2013. [10] 中华人民共和国国家标准. GB/T 1094.16—2013 电力变压器第16部分: 风力发电用变压器[S]. 北京: 中国标准出版社, 2013. [11] 蒋程, 刘文霞, 张建华, 等. 含风电接入的发输电系统风险评估[J]. 电工技术学报, 2014, 29(2): 260-270. [12] 吴胜连, 朱佩龙. 40.5kV风电专用高压真空负荷隔离开关的设计[J]. 电气技术, 2013, 14(9): 102-103. [13] 徐勇, 胡德. 10kV PT熔断器雷击熔断原因分析[J]. 高电压技术, 2000, 26(4): 46-47. [14] 郑珊珊, 任洪涛. 基于变压器谐波模型的风电场谐波电流计算[J]. 电气技术, 2015(6): 44-47. [15] 中华人民共和国国家标准. GB/T 15166.2—2008 高压交流熔断器第2部分: 限流熔断器[S]. 北京: 中国标准出版社, 2008. [16] 中华人民共和国国家标准. GB/T 15166.6—2008 高压交流熔断器第6部分: 用于变压器回路的高压限流熔断器的熔断件选用导则[S]. 北京: 中国标准出版社, 2008. [17] 赫兟, 徐旭, 饶保林. 环氧树脂固化物结构与热传导性能的关系[J]. 绝缘材料, 2009, 42(2): 46-47, 51. [18] 王有元, 王施又, 黄炎光, 等. 干式变压器环氧树脂热老化特性研究[J]. 高电压技术, 2018, 44(1): 187-194. [19] 杜伯学, 梁虎成, 杜强, 等. 交流与脉冲电压联合作用下环氧树脂表面电荷的动态特性[J]. 高电压技术, 2018, 44(3): 688-695. [20] 王华东. 电力设备预防性试验存在的问题及对策[J]. 电气技术, 2014, 15(9): 119-121. [21] 梁晨, 伍衡, 李原龙, 等. 油中碳颗粒对交直流复合电压下绝缘油击穿特性的影响[J]. 绝缘材料, 2018(4): 21-27. |
|
|
|