|
|
Error prediction of optical current measurement device for DC pole line in converter station based on variational mode decomposition and extreme learning machine |
LUO Qiang1, HUANG Yulei2, YAN Jun3, ZI Yuehua4, XU Tianqi2 |
1. Jiangsu LingChuang Electric Automation Co.,Ltd, Zhenjiang, Jiangsu 212000; 2. The Key Laboratory of Cyber-Physical Power System of Yunnan Universities, Yunnan Minzu University, Kunming 650504; 3. China Three Gorges Wuhan Science and Technology Innovation Park, Wuhan 430010; 4. Hua’neng Longkaikou Hydropower Co.,Ltd, Dali, Yunnan 671506 |
|
|
Abstract With the rapid development of high voltage direct current (HVDC) transmission in China, optical principle based pole-to-pole DC measurement devices are widely used. Accurately predicting the trend of measurement errors is crucial for the operation and protection of HVDC transmission systems. In response to the problems of large prediction errors and low training efficiency in existing methods, a prediction method based on variational mode decomposition and extreme learning machine is proposed. The error time series of the measurement device is decomposed using variational mode decomposition, and then a particle swarm optimization algorithm is used to optimize the extreme learning machine for multi-step prediction of each mode. The predicted measurement error is obtained through reconstruction. Through comparison with multiple models, the superiority of the proposed method is verified.
|
Received: 10 April 2024
|
|
|
|
Cite this article: |
LUO Qiang,HUANG Yulei,YAN Jun等. Error prediction of optical current measurement device for DC pole line in converter station based on variational mode decomposition and extreme learning machine[J]. Electrical Engineering, 2024, 25(11): 1-9.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I11/1
|
[1] 李翠萍, 余芳芳, 李军徽, 等. 基于MMC的多端高压直流输电系统研究综述[J]. 现代电力, 2017, 34(1): 62-68. [2] 赖增强. 高压直流光学电流互感器关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2020. [3] 周军, 肖恺, 李平, 等. 全光纤电流互感器技术综述[J]. 信息通信, 2015, 28(5): 20-22. [4] 朱金摇. 电子式互感器在智能变电站中的应用研究[D]. 株洲: 湖南工业大学, 2017. [5] 梁裕, 张文明. 光纤电流传感器专利文献分析[J]. 河南科技, 2016(4): 83-85. [6] 张海亮. 反射式全光纤电流互感器误差研究[D]. 西安: 西安电子科技大学, 2012. [7] 尚秋峰, 杨以涵, 高桦. 一种高准确度有源光学电流互感器的研制与校验[J]. 电工技术学报, 2005, 20(3): 105-110. [8] 王乐仁, 雷民, 章述汉. 特高压直流换流站电流电压传感器的测量误差[J]. 高电压技术, 2006, 32(12): 164-167. [9] 彭继煌, 贺思婷, 魏武. 直流大电流测量系统不确定度分析[J]. 电子产品可靠性与环境试验, 2022, 40(增刊2): 46-48. [10] 周源, 魏国富, 李亚锦, 等. 基于LSTM的换流站直流测量系统状态趋势预测方法[J]. 电气自动化, 2022, 44(4): 67-70. [11] 陈平, 周娟, 吴名功. 基于改进GWO-GM(1,1)模型的直流充电桩在线计量误差预测方法研究[J]. 现代电子技术, 2024, 47(5): 112-117. [12] 刘晓君. 基于卡尔曼滤波的电子计量设备测量误差预测方法[J]. 工业计量, 2023, 33(6): 40-44. [13] 龚丹丹. 基于VMD-ICOA-BiLSTM混合模型的日前电价预测[J]. 电气技术, 2023, 24(11): 28-34. [14] 杨童亮, 胡东, 唐超, 等. 基于SMA-VMD-GRU模型的变压器油中溶解气体含量预测[J]. 电工技术学报, 2023, 38(1): 117-130. [15] 周修理, 张萍萍, 秦娜, 等. 基于GA-RF模型土壤坚实度对黑土区大豆产量的影响[J]. 东北农业大学学报, 2022, 53(10): 67-75. [16] 施云祺, 王子阳, 杨宏兵. 基于GA-SVR混合方法的非标设备设计时间预测[J]. 现代制造工程, 2023(3): 1-7. [17] 张文煜, 马可可, 郭振海, 等. 基于灰狼算法和极限学习机的风速多步预测[J]. 郑州大学学报(工学版), 2024, 45(2): 89-96. [18] 王刚. 基于极限学习机的时间序列预测[D]. 沈阳: 沈阳工业大学, 2019. [19] YAMAGATA Y, OSHI T, KATSUKAWA H, et al.Development of optical current transformers and application to fault location systems for substations[J]. IEEE Transactions on Power Delivery, 1993, 8(3): 866-873. [20] 董志文, 苏晶晶. 基于变分模态分解能量熵混合时域特征和随机森林的故障电弧检测方法[J]. 电气技术, 2024, 25(1): 1-7. [21] 刘美, 纽春萍, 姬忠校, 等. 基于变分模态分解的光纤电流传感器小波去噪方法[J]. 电气技术, 2021, 22(4): 7-11. [22] 屈龙腾, 李沛兴, 乔壮壮. 基于变分模态分解和希尔伯特变换的直流纹波检测[J]. 电气技术, 2020, 21(8): 66-72, 86. [23] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE Transactions on Signal Pro-cessing, 2014, 62(3): 531-544. [24] HUANG Guangbin, ZHU Qinyu, SIEW C K.Extreme learning machine: theory and applications[J]. Neuro-computing, 2006, 70(1/2/3): 489-501. [25] 陈世群, 高伟, 陈孝琪, 等. 一种基于极限学习机和皮尔逊相关系数的光伏阵列故障快速诊断方法[J]. 电气技术, 2021, 22(10): 57-64. [26] HUANG Gao, HUANG Guangbin, SONG Shiji, et al.Trends in extreme learning machines: a review[J]. Neural Networks, 2015, 61: 32-48. [27] WANG Jian, LU Siyuan, WANG Shuihua, et al.A review on extreme learning machine[J]. Multimedia Tools and Applications, 2022, 81(29): 275-324. [28] 张耀, 姚瑶, 陈卓, 等. 基于粒子群差分进化极限学习机的电力系统故障诊断模型[J]. 机械与电子, 2024, 42(3): 60-64, 70. |
|
|
|