|
|
Research on parameters of fault region segmentation method for infrared images of substation based on K-means clustering |
XIAO Yi1,2, LI Weiqi3, WANG Yun3, HE Yushuang4, LUO Dan3 |
1. State Grid Chongqing Electric Power Company Yongchuan Power Supply Branch, Chongqing 402160; 2. State Grid Chongqing Electric Power Company Construction Branch, Chongqing 401100; 3. State Grid Chongqing Electric Power Company Shinan Power Supply Branch, Chongqing 401336; 4. School of Electrical & Information Engineering, Changsha University of Science and Technology, Changsha 410114 |
|
|
Abstract This paper analyzed an fault region segmentation method for substation infrared images based on K-means clustering. Firstly, the principle of K-means clustering algorithm applied to image detection is introduced. Secondly, the fault region of infrared image is extracted by the K-means clustering algorithm, and the results show that the K-means clustering can be used for identification of fault region. Finally, the influence of K-means clustering algorithm parameters on infrared image segmentation is analyzed and discussed. The results show that the fault category and initial classification point of infrared image affect the accuracy of segmentation result. In practical application, the initial setting can be carried out according to the characteristics of infrared image to improve the efficiency and accuracy of image segmentation.
|
Received: 13 June 2024
|
|
|
|
Cite this article: |
XIAO Yi,LI Weiqi,WANG Yun等. Research on parameters of fault region segmentation method for infrared images of substation based on K-means clustering[J]. Electrical Engineering, 2024, 25(11): 10-14.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I11/10
|
[1] 赵勇军, 廖圣, 杨万锐, 等. 一起基于声学及红外成像检测技术的配电网架空绝缘导线缺陷案例分析[J]. 电气技术, 2022, 23(12): 95-99. [2] 李玉齐, 朱琦文, 张健. 发电厂带电设备红外检测与故障诊断应用研究[J]. 电气技术, 2020, 21(1): 78-82, 85. [3] 张小钒. 变电站绝缘子红外检测技术分析[J]. 电气技术, 2020, 21(11): 106-109, 113. [4] 蒲天骄, 乔骥, 韩笑, 等. 人工智能技术在电力设备运维检修中的研究及应用[J]. 高电压技术, 2020, 46(2): 369-383. [5] LIU Daoguang, LÜ Lixia, LIU Changliang, et al.Flame furnace in thermal power plant condition monitoring using SVM[C]//2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 2009: 67-70. [6] 李泽, 钱勇, 刘伟, 等. GIS局部放电光信号检测技术及光学图像诊断方法[J/OL]. 电工技术学报, 1-11[2024-08-27]. https://doi.org/10.19595/j.cnki.1000-6753.tces.232016. [7] 张血琴, 周志鹏, 郭裕钧, 等. 不同材质绝缘子污秽等级高光谱检测方法研究[J]. 电工技术学报, 2023, 38(7): 1946-1955. [8] YAN Nannan, ZHOU Taiji, GU Chunjie, et al.Bimodal-based object detection and instance seg-mentation models for substation equipments[C]// IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020: 428-434. [9] 吴合风, 王国伟, 万造君, 等. 基于改进YOLOv8s的配电设备红外目标检测模型[J]. 电气技术, 2024, 25(3): 18-23. [10] 林丽霞, 吴悦园. 基于改进YOLOv7的电力设备红外过热缺陷检测方法[J]. 电气技术, 2024, 25(1): 42-47. [11] 杨帆, 王梦珺, 谭天, 等. 基于目标像素宽度识别的电力设备红外成像单目测距改进算法[J]. 电工技术学报, 2023, 38(8): 2244-2254. [12] 董懿飞, 舒胜文, 陈诚, 等. 基于红外图像分割与SSA-SVM的复合绝缘子缺陷检测方法[J]. 电气技术, 2021, 22(11): 73-79. [13] LLOYD S.Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982, 28(2): 129-137. [14] 带电设备红外诊断应用规范: DL/T 664—2016[S]. 北京: 中国电力出版社, 2016. [15] 肖懿, 罗丹, 蒋沁知, 等. 基于温度概率密度的变电站高压设备故障热红外图像识别方法[J]. 高电压技术, 2022, 48(1): 307-318. |
|
|
|