|
|
Numerical simulation of an electric vehicle permanent magnet synchronous motor with thermal-fluid-solid coupling method |
LI Dandan, MAO Jinlong, TANG Chengkun |
Geely Auto Research Institute (Ningbo) Co., Ltd, Ningbo, Zhejiang 315336 |
|
|
Abstract Thermal load of an electric vehicle water-cooled permanent magnet synchronous motor (PMSM) with hairpin windings is evaluated using thermal-fluid-solid coupling numerical simulation method, and the thermal load at peak torque point and rated speed point is predicted. The rotor speed is defined using multiple reference frame (MRF) combining with the circumferential heat flux averaging method which could greatly shorten the time of calculation. And the simulation results are basically consistent with the test data. The simulation results show that, at peak and rated work points, the temperature difference between inlet and outlet of cooling jacket is 2.8℃ and 4.0℃ respectively. The highest temperature of stator windings and rotor magnet can meet the relevant temperature-resistant design restrict, which indicates that the coolant mass flow rate and the motor cooling jacket designation is reasonable. Different from the rated speed point, most of the heat of each component at peak torque point is used for its own temperature rising, but the heat transfer path is similar, the main path is from stator winding to insulating paper, stator core, water jacket shell and coolant. While the temperature field is stable, the heat transferred from this path accounts for more than 96% of the total heat generation.
|
Received: 15 August 2024
|
|
|
|
Cite this article: |
LI Dandan,MAO Jinlong,TANG Chengkun. Numerical simulation of an electric vehicle permanent magnet synchronous motor with thermal-fluid-solid coupling method[J]. Electrical Engineering, 2024, 25(12): 42-49.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I12/42
|
[1] 王小飞, 代颖, 罗建. 基于流固耦合的车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(增刊1): 22-29. [2] WANG X, LI B, GERADA D, et al.A critical review on thermal management technologies for motors in electric cars[J]. Applied Thermal Engineering, 2022, 201: 117758. [3] 张浩. 某乘用车油冷式永磁同步电机温度场分析[D]. 重庆: 重庆理工大学, 2023. [4] 朱婷, 张雨晴, 李强, 等. 高功率密度电机混合型散热技术综述[J]. 电气技术, 2022, 23(8): 1-16, 52. [5] 范伊杰. 新能源车用扁线电机温度场计算与油路结构优化设计[D]. 哈尔滨: 哈尔滨理工大学, 2023. [6] 王晓光, 尹浩, 余仁伟. 轴向磁通无铁心永磁电机多层矩形扁线绕组涡流损耗解析计算及优化[J]. 电工技术学报, 2023, 38(12): 3130-3140. [7] 马永志, 杨良会. 不同层数扁线电机及其搭载整车性能分析[J]. 电气技术, 2021, 22(7): 26-31, 37. [8] 刘蕾. 纯电动汽车水冷永磁同步电机多工况热特性及冷却系统研究[D]. 合肥: 合肥工业大学, 2015. [9] 祝天利, 韩雪岩, 朱龙飞. 基于场路耦合的机器人永磁电动机损耗及其温升分析[J]. 电气技术, 2020, 21(6): 7-12, 55. [10] 刘壮, 韩雪岩, 高俊. 基于热固耦合的高速永磁电动机转子强度分析[J]. 电气技术, 2021, 22(5): 1-5, 101. [11] 师蔚, 骆凯传, 张舟云. 基于热网络法的永磁电机温度在线估计[J]. 电工技术学报, 2023, 38(10): 2686-2697. [12] LI Ye, LI Qi, FAN Tao, et al.Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle[J]. Energy Reports, 2023, 9: 282-288. [13] 何联格, 石文军, 陈红玲, 等. 车用螺旋型水道永磁同步电机温升特性[J]. 重庆理工大学学报(自然科学版), 2021, 35(10): 56-62. [14] 杜静娟, 黄新雨, 赵坚, 等. 车用强冷式永磁电机的多物理场耦合研究[J]. 电力系统及其自动化学报, 2022, 34(4): 77-82. [15] 陈鹏, 谢颖, 李道璐. 感应电机定子匝间短路故障温升特性研究[J]. 电工技术学报, 2023, 38(18): 4875-4888. [16] 刘慧军, 陈芬放, 黄瑞, 等. 车用驱动电机冷却系统仿真研究[J]. 中南大学学报(自然科学版), 2020, 51(7): 2002-2012. [17] 邢军强, 汪明武, 孔莹莹. 基于流固耦合的永磁直驱风力发电机传热分析[J]. 电气技术, 2021, 22(1): 47-52. [18] 何联格, 石文军, 郑建军, 等. 车用永磁同步电机极限变工况温升特性[J]. 微电机, 2021, 54(7): 87-91, 112. [19] 林巨广, 赖剑斌, 路玲. 车用永磁同步电机转子热结构耦合分析[J]. 合肥工业大学学报(自然科学版), 2019, 42(2): 172-177, 210. [20] 汪波, 黄珺, 查陈诚, 等. 多三相分数槽集中式绕组容错电机匝间短路故障温度场分析[J]. 电工技术学报, 2023, 38(19): 5101-5111. [21] 骆苗, 王洪武, 张东宁, 等. 高功率密度电机的热仿真分析[J]. 微特电机, 2020, 48(5): 17-19. |
|
|
|