|
|
Short term electricity price prediction based on variational mode decomposition and hybrid deep neural network |
LIU Yixuan, YANG Zhao |
Ultra High Voltage Company of State Grid Shaanxi Electric Power Co., Ltd, Xi’an 710025 |
|
|
Abstract A short term electricity price prediction method based on variational mode decomposition and hybrid deep neural network is proposed to address the characteristics of nonlinearity, volatility, and timeliness in electricity price data in the electricity market. Firstly, the original electricity price sequence is decomposed into multiple stationary subsequences using variational mode decomposition (VMD). Secondly, a hybrid deep neural network prediction model is used to predict and superimpose each subsequence separately, obtaining the final electricity price prediction result. This model combines convolutional neural network (CNN) and bidirectional long short term memory (BiLSTM) network to effectively extract spatial and temporal features of the original electricity price data, and combines attention mechanism to effectively distinguish the importance of electricity price data at different times in the original electricity price sequence. Finally, simulation analysis is conducted using actual electricity price data from the PJM electricity market in the United States, and the effectiveness of the proposed method is verified by comparing multiple electricity price prediction models.
|
Received: 22 July 2024
|
|
|
|
Cite this article: |
LIU Yixuan,YANG Zhao. Short term electricity price prediction based on variational mode decomposition and hybrid deep neural network[J]. Electrical Engineering, 2025, 26(3): 30-35.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I3/30
|
[1] 龚丹丹. 基于VMD-ICOA-BiLSTM混合模型的日前电价预测[J].电气技术, 2023, 24(11): 28-34. [2] 陈宇聪, 白晓清. 考虑时序二维变化的日前市场电价预测模型[J].电力系统及其自动化学报, 2024, 36(7): 22-29. [3] 张一泓, 朱国荣, 蔡永自, 等. 基于自回归积分滑动平均模型的日前电价预测[J].自动化技术与应用, 2020, 39(1): 125-129, 139. [4] 黄羹墙, 杨俊杰. 基于BP神经网络与马尔可夫链的短期电价预测[J].上海电力学院学报, 2017, 33(1): 1-3, 10. [5] 陈杰尧, 陶春华, 马光文, 等. 基于数据挖掘与支持向量机的现货市场出清价预测方法[J].电网与清洁能源, 2020, 36(10): 14-19, 27. [6] 殷豪, 曾云, 孟安波, 等. 基于奇异谱分析的短期电价预测[J].电力系统保护与控制, 2019, 47(1): 115-122. [7] 谢晓龙, 叶笑冬, 董亚明. 梯度提升随机森林模型及其在日前出清电价预测中的应用[J].计算机应用与软件, 2018, 35(9): 327-333. [8] 郭晨, 李雪瑞, 韩照洋, 等. 基于深度信念网络的日前电价预测[J].电力需求侧管理, 2022, 24(2): 86-91. [9] 韩升科, 胡飞虎, 陈之腾, 等. 基于GCN-LSTM的日前市场边际电价预测[J].中国电机工程学报, 2022, 42(9): 3276-3286. [10] 黄圆, 魏云冰, 童东兵, 等. 基于WPD和双重注意力机制TCN的短期电价预测[J].电工电能新技术, 2022, 41(6): 80-88. [11] 杨超, 冉启武, 罗德虎, 等. 基于注意力机制的CNN-BIGRU短期电价预测[J].电力系统及其自动化学报, 2024, 36(3): 22-29. [12] 许越, 李强, 崔晖. 基于MIC-EEMD-改进Informer的含高比例清洁能源与储能的电力市场短期电价多步预测[J].电网技术, 2024, 48(3): 949-958. [13] 高诗博, 高阳, 戴菁. 基于CEEMD-ISSA-LSSVM的日前电力市场价格预测[J].沈阳工程学院学报(自然科学版), 2023, 19(2): 71-78. [14] 郭雪丽, 华大鹏, 包鹏宇, 等. 一种基于改进VMD- PSO-CNN-LSTM的短期电价预测方法[J].电力科学与技术学报, 2024, 39(2): 35-43. [15] 吉兴全, 曾若梅, 张玉敏, 等. 基于注意力机制的CNN-LSTM短期电价预测[J].电力系统保护与控制, 2022, 50(17): 125-132. [16] 杨昭, 张钢, 赵俊杰, 等. 基于变分模态分解和改进粒子群算法优化最小二乘支持向量机的短期电价预测[J].电气技术, 2021, 22(10): 11-16. [17] 刘帼巾, 刘达明, 缪建华, 等. 基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别[J].电工技术学报, 2024, 39(4): 1221-1233. [18] 司马文霞, 孙佳琪, 杨鸣, 等. 计及铁心非线性的变压器空间动态磁场加速计算方法[J/OL].电工技术学报, 1-16 [2024-10-15].https://doi.org/10.19595/j. cnki.1000-6753.tces.240281. [19] 钟吴君, 李培强, 涂春鸣. 基于EEMD-CBAM- BiLSTM的牵引负荷超短期预测[J/OL].电工技术学报, 1-16 [2024-10-15].https://doi.org/10.19595/j.cnki.1000-6753.tces.231515. [20] 欧阳福莲, 王俊, 周杭霞. 基于改进迁移学习和多尺度CNN-BiLSTM-Attention的短期电力负荷预测方法[J].电力系统保护与控制, 2023, 51(2): 132-140. |
|
|
|