|
|
Optimization of charging strategy for electric heavy truck charging and swapping stations based on genetic algorithm |
WANG Bo1, YANG Ke’nan1, YANG Yingchun2, WANG Shaopeng2, HAN Jinfeng3 |
1. XJ Electric Co., Ltd, Xuchang, He’nan 461000; 2. Xuchang Xuji Software Technology Co., Ltd, Xuchang, He’nan 461000; 3. College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 |
|
|
Abstract Electric heavy truck charging and swapping stations are developing rapidly, and battery charging strategies have an important impact on station-side operating costs and user battery swapping experience. How to meet the daily battery swapping needs of electric heavy trucks while minimizing station-side operating costs and shortening user battery swapping waiting time is a key research direction. First, a certain electric heavy truck charging and swapping station is taken as the experimental object, and statistical analysis methods are used to obtain user battery swapping needs at different times of the day. Secondly, a charging strategy optimization control model is proposed with the goal of reducing station-side battery charging costs and life loss costs. Combined with battery swapping demand and time-of-use electricity prices, a genetic algorithm is used to solve the charging rate matrix and charging cut-off voltage of the battery charging compartment at different times of the day. Finally, the effectiveness of the model is verified through experimental examples, which also provides reference for its wide application in actual charging and swapping stations.
|
Received: 29 November 2024
|
|
|
|
[1] 张成玉, 方帅, 朱宇鹏. 考虑需求响应的新能源电动汽车充电桩充放电控制方法[J].电器工业, 2024(11): 66-70, 78. [2] 唐诗鉴, 罗艳托, 张学梁, 等. 中国新能源汽车充电市场存在的问题及发展路径探讨[J].油气与新能源, 2024, 36(5): 10-16, 27. [3] 覃见吉. 一种适用于纯电动重卡充电的兆瓦级高压充电集方案[J].商用汽车, 2024(2): 74-77. [4] 李彧. 供应链视角下政府补贴对重卡换电模式的影响研究[D].重庆: 重庆交通大学, 2024. [5] 佟晶晶, 温俊强, 王丹, 等. 基于分时电价的电动汽车多目标优化充电策略[J].电力系统保护与控制, 2016, 44(1): 17-23. [6] SACHAN S, ADNAN N.Stochastic charging of electric vehicles in smart power distribution grids[J].Sustainable Cities and Society, 2018, 40: 91-100. [7] 谭维玉, 雷雨, 李军, 等. 计及动态分时电价的电动汽车参与电网调度研究[J].可再生能源, 2020, 38(11): 1515-1522. [8] 熊虎, 向铁元, 祝勇刚, 等. 电动汽车公共充电站布局的最优规划[J].电力系统自动化, 2012, 36(23): 65-70. [9] 程飞, 郭春林, 高泽阳, 等. 参与电网削峰调节的电动重卡换电站调度策略[J].电力系统自动化, 2024, 48(9): 120-128. [10] 孙希泉, 侯恩广. 动力锂电池剩余使用寿命影响因素分析[J].山东科学, 2021, 34(3): 49-53, 61. [11] 黄静, 刘玉惠. 一种求解约束优化问题的遗传算法[J].青海师范大学学报(自然科学版), 2020, 36(1): 11-15. [12] 傅质馨, 朱韦翰, 朱俊澎, 等. “车-电-路-站”互联下电动出租车换电需求预测及换电站充电优化策略[J].电力自动化设备, 2022, 42(10): 116-124. [13] 顾映彬, 黄培锋, 王涓, 等. 考虑混合车流的电动汽车充电站优化布局策略[J].电气技术, 2024, 25(7): 15-22, 31.) [14] 刘动, 孟晨旭, 潘正阳, 等. 居民小区经营性电动汽车充电站投资建设研究[J].电气技术, 2022, 23(6): 104-108. [15] 孙宇乐. 计及需求敏感性的电动私家车充电站规划[J].电气技术, 2022, 23(6): 99-103, 108. [16] 房宇轩, 胡俊杰, 马文帅. 计及用户意愿的电动汽车聚合商主从博弈优化调度策略[J].电工技术学报, 2024, 39(16): 5091-5103. [17] 葛少云, 朱林伟, 刘洪, 等. 基于动态交通仿真的高速公路电动汽车充电站规划[J].电工技术学报, 2018, 33(13): 2991-3001. |
|
|
|