|
|
Peer-to-peer trading of integrated electricity-heat energy considering network utilization cost |
CHEN Yuyi, LIU Jianchen |
Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, Liaoning 125105 |
|
|
Abstract Considering that the network utilization cost in peer-to-peer (P2P) integrated energy transactions often accounts for more than 25% of the transaction costs, which significantly impacts the transaction benefits for prosumers, a P2P transaction strategy for the integrated electricity-heat energy system, which accounts for the network utilization cost, is proposed. Electrical distances in transaction path for electrical energy, and thermal resistances and lengths of pipelines in transaction path for thermal energy, are modeled to calculate the network utilization cost for both electricity and heat networks. By using the reputation index to assess the willingness of both parties participating in transactions, the optimization problem of P2P energy transaction strategy is constructed. Furthermore, a distributed solution method based on alternating direction method of multipliers (ADMM) is proposed. A P2P integrated energy simulation system comprising a 15-node electrical grid and an 8-node thermal network is established and further extended to a 33-node electrical grid and a 23-node thermal network system to verify the effectiveness of the proposed method and its scalability in P2P energy trading. Simulation results show that electricity-heat integrated energy P2P transactions with considering the network utilization cost are helpful to reducing energy transaction costs, promoting local energy consumptions, and increasing social welfares.
|
Received: 15 January 2025
|
|
|
|
Cite this article: |
CHEN Yuyi,LIU Jianchen. Peer-to-peer trading of integrated electricity-heat energy considering network utilization cost[J]. Electrical Engineering, 2025, 26(6): 17-28.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I6/17
|
[1] 江美慧, 许镇江, 张其朴, 等. 面向综合能源系统的综合需求响应策略及其建模技术[J]. 电力建设, 2024, 45(12): 65-82. [2] 周玮, 王誉颖, 芝昕雨, 等. 计及P2P市场产消者灵活性的配电网阻塞管理[J]. 电力系统保护与控制, 2024, 52(15): 91-104. [3] 荆朝霞, 李煜鹏, 赵昱宣, 等. 能源系统低碳转型背景下的混合电力市场体系结构与设计[J]. 电力系统自动化, 2024, 48(11): 24-36. [4] 何英静, 王曦冉, 王文涛, 等. 电力市场背景下考虑设备投资潜在价值的输电网规划[J]. 电气技术, 2022, 23(12): 1-8. [5] 张光儒, 任浩栋, 马振祺, 等. 提升配电网承载力和调节能力的整县分布式光伏储能配置方法[J]. 电气技术, 2022, 23(11): 49-55, 61. [6] 胡健, 于娣, 张晓杰. 电力P2P交易中计及社会福利的产消者合作联盟[J]. 中国电机工程学报, 2024, 44(3): 960-971. [7] 刘任, 刘洋, 许立雄, 等. 计及分布式需求响应的多微电网系统协同优化策略[J]. 电力建设, 2023, 44(5): 72-83. [8] 缪雅慧, 焦燕, 徐浩. 含储能的多能互补系统功率控制方案[J]. 电气技术, 2024, 25(5): 75-80. [9] 李晓蕾, 刘军会, 张艺涵, 等. 基于混合博弈的虚拟电厂优化运行与P2P交易机制[J]. 供用电, 2024, 41(12): 13-22. [10] 罗清局, 朱继忠. 基于改进交替方向乘子法的电-气综合能源系统优化调度[J]. 电工技术学报, 2024, 39(9): 2797-2809. [11] 吴孟雪, 房方. 计及风光不确定性的电-热-氢综合能源系统分布鲁棒优化[J]. 电工技术学报, 2023, 38(13): 3473-3485. [12] XUE Yixun, SHAHIDEHPOUR M, PAN Zhaoguang, et al.Reconfiguration of district heating network for operational flexibility enhancement in power system unit commitment[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1161-1173. [13] 林雨眠, 熊厚博, 张笑演, 等. 计及新能源机会约束与虚拟储能的电-热系统分布式多目标优化调度[J].电工技术学报, 2024, 39(16): 5042-5059. [14] ANOH K, MAHARJAN S, IKPEHAI A, et al.Energy peer-to-peer trading in virtual microgrids in smart grids: a game-theoretic approach[J]. IEEE Transa- ctions on Smart Grid, 2020, 11(2): 1264-1275. [15] WILKINSON S, HOJCKOVA K, EON C, et al.Is peer-to-peer electricity trading empowering users? Evidence on motivations and roles in a prosumer business model trial in Australia[J]. Energy Research & Social Science, 2020, 66: 101500. [16] MALDET M, REVHEIM F H, SCHWABENEDER D, et al.Trends in local electricity market design: regulatory barriers and the role of grid tariffs[J]. Journal of Cleaner Production, 2022, 358: 131805. [17] ALI L, AZIM M I, PETERS J, et al.Blockchain-based local energy market enabling P2P trading: an Austra- lian collated case study on energy users, retailers and utilities[J]. IEEE Access, 2022, 10: 124429-124447. [18] ULLAH M H, PARK J D.Peer-to-peer energy trading in transactive markets considering physical network constraints[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3390-3403. [19] TUSHAR W, SAHA T K, YUEN C, et al.Grid influenced peer-to-peer energy trading[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1407-1418. [20] FROLKE L, SOUSA T, PINSON P.A network-aware market mechanism for decentralized district heating systems[J]. Applied Energy, 2022, 306: 117956. [21] ZHOU Yue, WU Jianzhong, LONG Chao.Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework[J]. Applied Energy, 2018, 222: 993-1022. [22] JING Rui, XIE Meina, WANG Fengxiang, et al.Fair P2P energy trading between residential and com- mercial multi-energy systems enabling integrated demand-side management[J]. Applied Energy, 2020, 262: 114551. [23] HUANG Ting, SUN Yi, JIAO Mengting, et al.Bilateral energy-trading model with hierarchical personalized pricing in a prosumer community[J]. International Journal of Electrical Power & Energy Systems, 2022, 141: 108179. [24] YAO Shuhan, WANG Peng, ZHAO Tianyang.Trans- portable energy storage for more resilient distribution systems with multiple microgrids[J]. IEEE Transa- ctions on Smart Grid, 2019, 10(3): 3331-3341. |
|
|
|