|
|
A multi-target bird recognition method for transmission lines based on radar and camera data fusion |
FAN Chengtao1, GAO Wei1, JIN Xiaoxi2 |
1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108; 2. Fuzhou Electric Power Design Institute Co., Ltd, Fuzhou 350007 |
|
|
Abstract This paper proposes a multi-target recgnition network for birds on power transmission lines, called RVFNet, based on the fusion of radar and camera data. The network achieves high-precision recgnition of bird targets within the monitoring range by integrating radar radio frequency (RF) data with visual images. To address the semantic differences between multimodal data, the correspondence between radar RF signals and image positional information is calculated to ensure consistency in feature representation. Structurally, the network incorporates a bird posture convolutional network (BPC) to effectively fuse multimodal information, enhancing the extraction of small-target features and preserving fine details. Additionally, a feature fusion module (FFM) is introduced to integrate multimodal features, significantly improving feature interaction while maintaining low computational costs. Experimental results demonstrate that RVFNet achieves an average bird recognition accuracy of 80.18% under various weather conditions, highlighting its robustness.
|
Received: 09 January 2025
|
|
|
|
Cite this article: |
FAN Chengtao,GAO Wei,JIN Xiaoxi. A multi-target bird recognition method for transmission lines based on radar and camera data fusion[J]. Electrical Engineering, 2025, 26(6): 29-37.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I6/29
|
[1] 杨鑫, 周攀, 李斌, 等. 10kV配电线路鸟害防治措施研究[J]. 科技创新与应用, 2021, 11(18): 109-113. [2] 戴宇辰, 叶青, 许安杰, 等. 配电线路鸟害故障预测模型研究[J]. 电气技术, 2018, 19(3): 100-102. [3] 王翼虎, 徐浩. 330kV紧凑型铁塔鸟害故障研究[J]. 电工技术, 2023(22): 202-205. [4] 付豪, 张东, 董新胜, 等. 输电线路涉鸟故障防范措施研究[J]. 电气技术, 2016, 17(3): 132-135. [5] 李秋平. 关于20kV线路裸导线运行的防鸟害研究[J]. 电气技术, 2016, 17(8): 136-139. [6] 张传民, 张东. 防鸟刺针刺长度选择方法[J]. 电气技术, 2023, 24(4): 48-51, 56. [7] 刘希和, 刘佳俊, 柯贤友, 等. 220kV输电线路感应电压驱鸟试验和应用[J]. 电气技术, 2013, 14(9): 44-48. [8] 周文平, 李永茂, 张君, 等. 电力线路驱鸟防治系统研究[J]. 电工技术, 2020(5): 58-59, 62. [9] 刘传洋, 吴一全, 刘景景. 无人机航拍图像中绝缘子缺陷检测的深度学习方法研究进展[J]. 电工技术学报, 2025, 40(9): 2917-2930. [10] 郑含博, 胡思佳, 梁炎燊, 等. 基于YOLO-2MCS的输电线路走廊隐患目标检测方法[J]. 电工技术学报, 2024, 39(13): 4164-4175. [11] 仲林林, 胡霞, 刘柯妤. 基于改进生成对抗网络的无人机电力杆塔巡检图像异常检测[J]. 电工技术学报, 2022, 37(9): 2230-2240, 2262. [12] 廖宁生, 曹天秀, 刘科言, 等. 复合特征与多尺度融合的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(3): 111-120. [13] 杨波, 曹雪虹, 焦良葆, 等. 改进实时目标检测算法的电力巡检鸟巢检测[J]. 电气技术, 2020, 21(5): 21-27, 32. [14] LIANG Haijun, ZHANG Xiangwei, KONG Jianguo, et al.SMB-YOLOv5: a lightweight airport flying bird detection algorithm based on deep neural networks[J]. IEEE Access, 2024, 12: 84878-84892. [15] WANG Yizhou, JIANG Zhongyu, LI Yudong, et al.RODNet: a real-time radar object detection network cross-supervised by camera-radar fused object 3D localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 954-967. [16] 吴洋铭, 洪翠, 高伟. 基于雷达点云与视觉图像融合的输电线路探鸟驱鸟技术[J]. 高电压技术, 2023, 49(8): 3446-3457. [17] GAO Wei, WU Yangming, HONG Cui, et al.RCVNet: a bird damage identification network for power towers based on fusion of RF images and visual images[J]. Advanced Engineering Informatics, 2023, 57: 102104. [18] LIANG Tianyi, LI Baopu, WANG Mengzhu, et al.A closer look at the joint training of object detection and re-identification in multi-object tracking[J]. IEEE Transactions on Image Processing, 2022, 32: 267-280. [19] ZHENG Zhaohui, WANG Ping, LIU Wei, et al.Distance- IoU loss: faster and better learning for bounding box regression[C]//AAAI Conference on Artificial Intel- ligence, New York, USA, 2020: 12993-13000. [20] REN Shaoqing, HE Kaiming, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [21] DAI Jifeng, QI Haozhi, XIONG Yuwen, et al.Defor-mable convolutional networks[C]//2017 IEEE Inter- national Conference on Computer Vision (ICCV), Venice, Italy, 2017: 764-773. [22] REDMON J, FARHADI A.YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767v1. [23] KOWOL K, ROTTMANN M, BRACKE S, et al.YOdar: uncertainty-based sensor fusion for vehicle detection with camera and radar sensors[EB/OL]. https://arxiv.org/abs/2010.03320v2. |
|
|
|