|
|
Research on the identification of abnormal electricity consumption behavior of charging piles based on cluster analysis |
WEI Haibin, GUO Qinghua, HUANG Yu'nan, FANG Xiaolin |
Putian Electric Power Supply Company, Fujian Electric Power Co., Ltd, Putian, Fujian 351100 |
|
|
Abstract This study aims to effectively identify abnormal or non-compliant electricity consumption behaviors in electric vehicle charging stations, thereby enhancing the efficiency and accuracy of electricity management for these stations. Initially, the study analyzes the electricity consumption behavior characteristics of low-voltage charging stations, determining the differences in load characteristic curves between normal and abnormal electricity consumption states. Based on this, a clustering analysis algorithm is employed to extract load curve characteristics from operational charging stations and compare them with standard load curves to assess the presence of abnormal electricity consumption behaviors. Additionally, considering potential misjudgments arising from the “fast charging” and “slow charging” phases during the charging process, the concept of sliding difference linear fitting is introduced. This involves calculating the slope between each pair of 96-point load data points and using the number of slope changes to assist in the judgment of clustering analysis results. Through the aforementioned methods, users exhibiting abnormal electricity consumption behaviors have been successfully identified, providing technical support for the management of electricity consumption in charging stations.
|
Received: 24 January 2025
|
|
|
|
Cite this article: |
WEI Haibin,GUO Qinghua,HUANG Yu'nan等. Research on the identification of abnormal electricity consumption behavior of charging piles based on cluster analysis[J]. Electrical Engineering, 2025, 26(6): 64-67.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I6/64
|
[1] 赵云龙, 孔庚, 李卓然, 等. 全球能源转型及我国能源革命战略系统分析[J]. 中国工程科学, 2021, 23(1): 15-23. [2] 陈玉蛟, 张晓彤, 张唤桥, 等. 典型场景下充电负荷接入配变的影响分析方法[J]. 电工技术, 2024(16): 34-37, 40. [3] 黄学良, 刘永东, 沈斐, 等. 电动汽车与电网互动:综述与展望[J]. 电力系统自动化, 2024, 48(7): 3-23. [4] 杨镜司, 秦文萍, 史文龙, 等. 基于电动汽车参与调峰定价策略的区域电网两阶段优化调度[J]. 电工技术学报, 2022, 37(1): 58-71. [5] 刘晟源, 章天晗, 林振智, 等. 数据赋能低压配用电系统精益化运行的关键技术与算法[J]. 电力系统自动化, 2023, 47(3): 187-199. [6] 傅靖, 季润阳, 王栋, 等. 基于并行K-Means聚类的配电网台区用户行为分析模型研究及应用[J]. 电网与清洁能源, 2018, 34(11): 71-76. [7] 薛晓慧, 张文, 张静, 等. 基于二次聚类的充电桩执行电价异常检测方法[J]. 电信科学, 2025, 41(1): 184-190. [8] 陈曦鸣, 杨强, 郑抗震, 等. 基于用电特性分析的充电桩电价执行异常识别方法[J]. 电力信息与通信技术, 2024, 22(7): 53-58. [9] 彭显刚, 郑伟钦, 林利祥, 等. 基于密度聚类和Fréchet判别分析的电价执行稽查方法[J]. 电网技术, 2015, 39(11): 3195-3201. [10] 林幕群, 彭显刚, 林利祥, 等. 基于数据挖掘技术的电价执行在线稽查模型[J]. 广东电力, 2016, 29(1): 108-112. [11] 黄劼, 汪逸帆, 林叶青, 等. 基于K均值聚类算法的谐振接地系统故障区段定位方法[J]. 电气技术, 2024, 25(3): 24-31. [12] 林骏捷, 林佳壕, 郭谋发. 基于多暂态特征量聚类的配电网接地故障区段定位方法[J]. 电气技术, 2023, 24(5): 16-22. [13] 张素香, 赵丙镇, 王风雨, 等. 海量数据下的电力负荷短期预测[J]. 中国电机工程学报, 2015, 35(2): 37-42. [14] 许俊楠, 郝一宁, 葛杰, 等. 电力数据异常值的检测方法[J]. 电工技术, 2024(10): 197-207. [15] 李君卫, 汤亚芳, 郝正航, 等. 聚类分析及其在电力系统中的应用综述[J]. 现代电力, 2019, 36(3): 1-10. |
|
|
|