|
|
Distribution network cluster partitioning method considering schedulable capacity of electric vehicles |
LIU Lulu1, WANG Zheng2, LI Hao3, JI Zhenya1, LIU Xiaofeng1 |
1. School of Electrical & Automation Engineering, Nanjing Normal University, Nanjing 210023; 2. State Grid Jiangsu Electric Vehicle Service Co., Ltd, Nanjing 210019; 3. CRRC Nanjing Puzhen Haitai Equipment Co., Ltd, Nanjing 210031 |
|
|
Abstract The clustering of distribution networks optimizes resource allocation and achieves load balancing through node partitioning. Existing clustering indicators primarily rely on modularity and power balance metrics, neglecting the impact of electric vehicle (EV) schedulable characteristics on distribution network flexibility. To address this, a new sub-indicator, which is bilateral EV schedulable capacity matching load demand and EV response, is defined, and a comprehensive indicator is constructed using a combined weighting method. Simulations based on the IEEE 33-node system are conducted with various indicator types, EV penetration levels, and time period scenarios. By comparatively analyzing the impacts of these factors on clustering results, the practicality and effectiveness of the proposed method are validated.
|
Received: 17 December 2024
|
|
|
|
Cite this article: |
LIU Lulu,WANG Zheng,LI Hao等. Distribution network cluster partitioning method considering schedulable capacity of electric vehicles[J]. Electrical Engineering, 2025, 26(7): 13-20.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I7/13
|
[1] 黄伟达, 李天友, 黄超艺. 计及分布式光伏的农村配电台区断零故障分析[J]. 电气技术, 2022, 23(2): 31-35. [2] 李斌, 罗晓伊. 分布式电源对电力系统电压无功优化影响的研究[J]. 电气技术, 2024, 25(10): 55-61, 78. [3] 李军徽, 潘雅慧, 穆钢, 等. 高比例风电系统中储能集群辅助火电机组调峰分层优化控制策略[J]. 电工技术学报, 2025, 40(7): 2127-2145. [4] 陈楚靓, 李晓露, 纪坤华, 等. 考虑源荷储匹配的配电网集群划分与优化运行[J]. 电力建设, 2023, 44(9): 80-93. [5] 杨龙月, 任烜辰, 蔡智鹏, 等. 高光伏渗透率配电网电压控制策略研究综述[J]. 电网技术, 2024, 48(12): 5056-5070. [6] 马启鹏, 郝正航, 张裕, 等. 含高渗透率分布式光伏配电网的网络分区与电压协调控制[J]. 电网与清洁能源, 2023, 39(3): 93-102, 108. [7] 彭啸宇, 沈怡, 陆秋瑜, 等. 考虑风电出力不确定性的电网无功-电压控制鲁棒分区方法[J]. 电网技术, 2023, 47(10): 4102-4111. [8] 赵晶晶, 贾然, 陈凌汉, 等. 基于深度学习和改进K-means聚类算法的电网无功电压快速分区研究[J].电力系统保护与控制, 2021, 49(14): 89-95. [9] 王晶晶, 姚良忠, 刘科研, 等. 面向区域自治的配电网动态区域划分方法[J]. 电网技术, 2024, 48(11): 4699-4709. [10] 黄冬梅, 杨凯, 余京朋, 等. 考虑净负荷均衡的分布式光伏集群电压调控策略研究[J]. 电网技术, 2024, 48(10): 4275-4285. [11] 杨德健, 卢学炫, 王枭, 等. 考虑用户特征与意愿的电动汽车调节功率刻画及频率支撑策略[J]. 电工技术学报, 2025, 40(11): 3560-3571. [12] 姚一鸣, 赵溶生, 李春燕, 等. 面向电力系统灵活性的电动汽车控制策略[J]. 电工技术学报, 2022, 37(11): 2813-2824. [13] XU Yan, HU Peng, ZHANG Fengyang, et al.Dis-tributed generation cluster division method con-sidering frequency regulation response speed[J]. Applied Sciences, 2024, 14(6): 2432. [14] 于惠钧, 马凡烁, 陈刚, 等. 基于改进灰狼优化算法的含光伏配电网动态无功优化[J]. 电气技术, 2024, 25(4): 7-15, 58. [15] 郑吉祥, 钟俊. 基于节点类型和分区耦合性的复杂网络无功电压快速分区方法[J]. 电网技术,2020, 44(1): 223-230. [16] 丁明, 刘先放, 毕锐, 等. 采用综合性能指标的高渗透率分布式电源集群划分方法[J]. 电力系统自动化, 2018, 42(15): 47-52, 141. [17] ALZAAREER K, SAAD M, MEHRJERDI H, et al.Development of new identification method for global group of controls for online coordinated voltage control in active distribution networks[J]. IEEE Transactions on Smart Grid, 2020, 11(5): 3921-3931. [18] 周颖, 龚桃荣, 陈宋宋, 等. 面向新型电力负荷管理的分层分区动态调控架构展望[J]. 电力信息与通信技术, 2023, 21(4): 51-58. [19] 罗李子. 互动环境下分布式电源与电动汽车充电站的优化配置方法研究[D]. 南京: 东南大学, 2019. [20] 徐智威, 胡泽春, 宋永华, 等. 充电站内电动汽车有序充电策略[J]. 电力系统自动化, 2012, 36(11): 38-43. |
|
|
|