|
|
State recognition of submarine cable burial depth based on temperature characteristic analysis |
JIN Jiangjiang1, FENG Junsheng1, LI Jicong1, TANG Jia2 |
1. Huaneng Renewables Corporation Limited Shaanxi Branch, Xi’an 710043; 2. Xi’an Thermal Power Research Institute Co., Ltd, Xi’an 710054 |
|
|
Abstract This paper proposes a shallow buried state recognition method for submarine cables based on bitterling fish optimization (BFO)-variational mode decomposition (VMD)-extreme learning machine (ELM) fusion method to address the problems of low overall convergence speed, poor global search ability, low computational accuracy, and poor performance in handling nonlinear and non-stationary data in existing submarine cable depth recognition models. Firstly, the VMD method is introduced to decompose the raw data into multiple sub signals, which can effectively extract components of different frequencies and amplitudes, thus better capturing the characteristics of temperature data. Secondly, the underlying model is constructed by utilizing the fast training speed and good generalization ability of ELM algorithm. Finally, the BFO algorithm is used to optimize the VMD-ELM algorithm, improving convergence speed and global search capability of the model, and reducing the potential high computational complexity when processing large-scale data. The training set is input into the network for training, the effectiveness of the network is verified with the test set, and shallow buried state recognition of submarine cables is achieved. Through on-site collection of temperature data and burial depth measurement data of submarine cable optical fibers, the testing accuracy is high and the results show that this method can accurately identify the shallow burial state of submarine cables.
|
Received: 25 December 2024
|
|
|
|
Cite this article: |
JIN Jiangjiang,FENG Junsheng,LI Jicong等. State recognition of submarine cable burial depth based on temperature characteristic analysis[J]. Electrical Engineering, 2025, 26(8): 44-49.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I8/44
|
[1] 国家能源局. 2024年可再生能源并网运行情况[EB/OL]. (2025-01-27)[2025-05-16]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html. [2] 中国能源网. 海上风电深远海政策调整落地, 海缆产品需求升级启动[EB/OL]. (2024-05-22)[2025-05-16]. https://www.cnenergynews.cn/jinrong/2024/05/22/detail_20240522161500.html. [3] 马国明, 秦炜淇, 王思涵, 等. 海底电缆状态分布式光纤监测技术研究综述[J]. 中国电机工程学报, 2025, 45(1): 370-387. [4] 侯帅, 王毅松, 朱闻博, 等. 高压海底电缆监测技术与应用综述[J]. 南方电网技术, 2023, 17(5): 49-58. [5] 申刘飞, 翟雨佳, 吴星徵, 等. 海上超导风电制氢一体化研究进展与发展趋势[J]. 电工技术学报, 2025, 40(11): 3362-3380. [6] LUX J, OLSCHEWSKI M, SCHAFER P, et al.Real-time determination of depth of burial profiles for submarine power cables[J]. IEEE Transactions on Power Delivery, 2019, 34(3): 1079-1086. [7] LI Qishun, HAO Yanpeng, ZHANG Peng, et al.Study on the burial depth calculation method for AC submarine cable based on the surface optical fiber monitoring temperature[J]. IET Generation, Transmi-ssion & Distribution, 2024, 18(18): 2930-2942. [8] 孙祥晟, 陈芳芳, 贾鉴, 等. 基于经验模态分解的神经网络光伏发电预测方法研究[J]. 电气技术, 2019, 20(8): 54-58. [9] 徐扬, 张紫涛. 基于遗传模拟退火算法改进BP神经网络的中长期电力负荷预测[J]. 电气技术, 2021, 22(9): 70-76. [10] 胡睿喆, 杨晓峰. 基于小波散射网络-贝叶斯优化门控循环单元的电力变压器声纹识别方法[J]. 电气技术, 2024, 25(8): 35-40, 46. [11] 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358. [12] SHERSTINSKY A.Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. [13] 衣思彤, 刘雅浓, 马耀浥, 等. 基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估[J]. 电气技术, 2024, 25(5): 1-10, 21. [14] 李浩, 黄晓峰, 邹豪杰, 等. 基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法[J]. 电气技术, 2024, 25(2): 12-20. [15] YU Yong, SI Xiaosheng, HU Changhua, et al.A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. [16] 杨淇, 陈景文, 华志广, 等. 基于集成型极限学习机的氢燃料电池寿命预测研究[J]. 电工技术学报, 2025, 40(3): 964-974. [17] 夏志凌, 胡凯波, 刘心悦, 等. 基于变模态分解的异步电机转子断条故障诊断[J]. 电工技术学报, 2023, 38(8): 2048-2059. [18] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE Transactions on Signal Pro-cessing, 2014, 62(3): 531-544. |
|
|
|