|
|
Research on deep learning based insulator recognition method for overhead transmission lines |
SONG Xinjie, JIN Yiming |
Deqing Power Supply Bureau, State Grid Zhejiang Electric Power Co., Ltd, Huzhou, Zhejiang 313200 |
|
|
Abstract Insulators with defects such as breakage, cracks and drops affect the stability of power system operation and reliability of power supply. Thus this paper proposes a deep learning based insulator recognition method for overhead transmission lines to improve the recognition accuracy. The coordinate attention (CA) mechanism is introduced into you only look once (YOLO) v7-tiny model and the convolution kernel of 3×3 with a step size of 1 is replaced by the deformable convolutional network (DCN) v2. The intersection over union (IoU) value of loss function is replaced by the normalized Wasserstein distance (NWD) to improve the insulator recognition capability in complex and occluded environments. The experimental results show that the improved YOLOv7-tiny model can effectively enhance the insulator recognition accuracy by improving the mean average precision (mAP) by 8.6%, 4.7%, 0.8%, and 3.4% compared with faster region convolutional neural network (Faster R-CNN), YOLOv5s, YOLOv7, and the original YOLOv7-tiny, respectively.
|
Received: 26 February 2025
|
|
|
|
Cite this article: |
SONG Xinjie,JIN Yiming. Research on deep learning based insulator recognition method for overhead transmission lines[J]. Electrical Engineering, 2025, 26(9): 62-68.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I9/62
|
[1] 王朝阳. 基于深度学习的输电线路绝缘子缺陷视觉检测技术研究[D]. 天津: 天津理工大学, 2021. [2] 孟令, 吴维国, 胡成城, 等. 一种万能绝缘子更换卡具的研制与分析[J]. 电气技术, 2023, 24(4): 52-56. [3] 曾维鋆. 基于深度学习的绝缘子检测与故障识别方法研究[D]. 杭州: 浙江大学, 2020. [4] 张血琴, 周志鹏, 郭裕钧, 等. 不同材质绝缘子污秽等级高光谱检测方法研究[J]. 电工技术学报, 2023, 38(7): 1946-1955. [5] MIAO Xiren, LIU Xinyu, CHEN Jing, et al.Insulator detection in aerial images for transmission line inspection using single shot multibox detector[J]. IEEE Access, 2019, 7: 9945-9956. [6] 陈天航, 曾业战, 邓倩, 等. 基于Transformer与信息融合的绝缘子缺陷检测方法[J]. 电气技术, 2024, 25(8): 11-17. [7] LI Xuefeng, SU Hansong, LIU Gaohua.Insulator defect recognition based on global detection and local segmentation[J]. IEEE Access, 2020, 8: 59934-59946. [8] 吴含欣, 董树锋, 张祥龙, 等. 考虑碳交易机制的含风电电力系统日前优化调度[J]. 电网技术, 2024, 48(1): 70-80. [9] 刘运政, 邹德仕, 吕强, 等. 塔型支柱瓷绝缘子抗震特性分析[J]. 电气技术, 2024, 25(12): 50-54. [10] 李鑫, 刘帅男, 杨桢, 等. 基于改进Cascade R-CNN的输电线路多目标检测[J]. 电子测量与仪器学报, 2021, 35(10): 24-32. [11] 李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝缘子缺陷检测[J]. 电工技术学报, 2023, 38(1): 60-70. [12] 王昱晴, 袁田, 聂霖, 等. 玻璃绝缘子玻璃件缺陷的机器视觉检测方法[J]. 高电压技术, 2022, 48(12): 4933-4940. [13] 张烨, 李博涛, 尚景浩, 等. 基于多尺度卷积注意力机制的输电线路防振锤缺陷检测[J]. 电工技术学报, 2024, 39(11): 3522-3537. [14] 王佰川, 王聪. 基于改进YOLOv4的配电线路绝缘子与避雷器快速检测研究[J]. 电瓷避雷器, 2023(3): 166-174. [15] 裴少通, 张行远, 胡晨龙, 等. 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39(9): 2825-2840. [16] HOU Qibin, ZHOU Daquan, FENG Jiashi.Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021: 13713-13722. [17] REN Hanpeng, DONG Lei, JIN Yangang, et al.Study on the lightweighting of YOLOv5s model for precise detection of irregular-shaped components[J]. Frontiers in Computing and Intelligent Systems, 2024, 6(3): 75-80. [18] GUO Shibo, REN Tianyu, WU Qing, et al.Fruit classification based on improved YOLOv7 algo- rithm[J]. Embedded Selforganising Systems, 2023, 10(7): 14-17. [19] ZHANG Jiarui, WEI Xia, ZHANG Linxuan, et al.YOLO v7-ECA-PConv-NWD detects defective insu- lators on transmission lines[J]. Electronics, 2023, 12(18): 3969. [20] TAO Xian, ZHANG Dapeng, WANG Zihao, et al.Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498. |
|
|
|