|
|
Short term wind power forecasting model based on secondary decomposition and hybrid deep neural network |
HE Ningjing1, ZHANG Cheng1,2 |
1. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118; 2. Fujian Provincal University Engineering Research Center for Simulation Analysis and Integrated Control of Smart Grid, Fujian University of Technology, Fuzhou 350118 |
|
|
Abstract Given the volatility and randomness of wind power, a model for short term wind power forecasting which utilizes secondary mode decomposition and an secretary bird optimization algorithm (SBOA)-optimized temporal convolutional netwaork (TCN)-bidirectional gate recurrent unit (BiGRU)- Attention mechanism to enhance prediction accuracy. Firstly, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) algorithms are applied for secondary mode decomposition of the wind power time series. Secondly, the decomposed sub-series are fed into the SBOA-TCN-BiGRU-Attention network for combined prediction, with the SBOA optimizing the neural network's hyperparameters to avoid local optima. Finally, the predicted values of the sub-series are aggregated to derive the final result. The simulation findings indicate the proposed combined forecasting method predicts short term wind power with high accuracy.
|
Received: 19 March 2025
|
|
|
|
Cite this article: |
HE Ningjing,ZHANG Cheng. Short term wind power forecasting model based on secondary decomposition and hybrid deep neural network[J]. Electrical Engineering, 2025, 26(9): 34-44.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I9/34
|
[1] 赵凌云, 刘友波, 沈晓东, 等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制, 2022, 50(1): 42-50. [2] 王红君, 谢煜轩,赵辉, 等. 改进黑猩猩算法和LSSVR-BiLSTM双尺度模型的短期风功率预测[J]. 重庆理工大学学报(自然科学), 2023, 37(9): 243-252. [3] 陈春宇, 黄宸恺, 王剑晓, 等. 考虑风电不确定性的调频辅助服务市场多时间尺度出清调度策略[J]. 电工技术学报, 2024, 39(21): 6804-6818. [4] 刘新宇, 蒲欣雨, 李继方, 等. 基于贝叶斯优化的VMD-GRU短期风电功率预测[J]. 电力系统保护与控制, 2023, 51(21): 158-165. [5] 陈磊, 黄凯阳, 张怡, 等. 基于信息重组和TCN- LSTM-MHSA的超短期风电功率预测[J/OL]. 南方电网技术, 1-10[2025-05-12]. http://kns.cnki.net/kcms/detail/44.1643.TK.20240626.1553.009.html. [6] 刘羿萱, 杨昭. 基于变分模态分解和混合深度神经网络的短期电价预测[J]. 电气技术, 2025, 26(3): 30-35. [7] 罗强, 黄玉磊, 颜俊, 等. 基于变分模态分解和极限学习机的换流站直流极线光学电流测量装置误差预测[J]. 电气技术, 2024, 25(11): 1-9. [8] 刘伟, 王洪志. 基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测[J]. 电气技术, 2024, 25(10): 8-14. [9] 刘吉成, 朱玺瑞, 于晶. 基于IWOA-SA-Elman神经网络的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 143-150. [10] 史彭珍, 魏霞, 张春梅, 等. 基于VMD-BOA- LSSVM-AdaBoost的短期风电功率预测[J]. 太阳能学报, 2024, 45(1): 226-233. [11] WANG Yun, ZOU Runmin, LIU Fang, et al.A review of wind speed and wind power forecasting with deep neural networks[J]. Applied Energy, 2021, 304: 117766. [12] 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4): 1129-1143. [13] 刘雨佳, 樊艳芳, 白雪岩, 等. 基于特征交叉机制和误差补偿的风力发电功率短期预测[J]. 电工技术学报, 2023, 38(12): 3277-3288. [14] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS- LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5): 77-84. [15] 朱菊萍, 魏霞, 谢丽蓉, 等. 基于VMD和改进BiLSTM的短期风电功率预测[J]. 太阳能学报, 2024, 45(6): 422-428. [16] 杨国华, 祁鑫, 贾睿, 等. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57(2): 55-61. [17] 钟吴君, 李培强, 涂春鸣. 基于EEMD-CBAM-Bi LSTM的牵引负荷超短期预测[J]. 电工技术学报, 2024, 39(21): 6850-6864. [18] WU Xiaomei, JIANG Songjun, LAI C S, et al.Short- term wind power prediction based on data decom- position and combined deep neural network[J]. Energies, 2022, 15(18): 6734. [19] 陈海鹏, 李赫, 阚天洋, 等. 考虑风电时序特性的深度小波-时序卷积网络超短期风功率预测[J]. 电网技术, 2023, 47(4): 1653-1665. [20] XIE Chenlei, YANG Xuelei, CHEN Tao, et al.Short-term wind power prediction framework using numerical weather predictions and residual con- volutional long short-term memory attention net- work[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108543. |
|
|
|