|
|
Design of wireless power supply coupling mechanism for logistics sorting machines |
LIU Xia1, SHAO Xuan1,2, TAO Guobin2 |
1. School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163319; 2. School of Electrical and Automation Engineering, Suzhou University of Technology, Suzhou, Jiangsu 215506 |
|
|
Abstract Aimed at addressing the problems of difficult maintenance, low efficiency, and potential safety hazards associated with traditional wired charging methods for logistics sorting machines, a bipolar rectangular coupling structure suitable for wireless power supply in sorting systems is proposed. Through structural optimization, a rectangular coupling mechanism featuring semi-encapsulated aluminum plates with bipolar plate-bipolar plate coils is designed. A mathematical model of the wireless power magnetic coupling mechanism is established to analyze the relationships between magnetic flux density, magnetic flux, coil turns, coil area, and self-inductance/mutual inductance. A three-dimensional numerical model of magnetic coupling effects is established based on the COMSOL Multiphysics simulation platform. Systematic investigations are conducted on the effects of different misalignment distances, coil geometries, coil positions, and aluminum plate configurations on the coupling mechanism's self-inductance and mutual inductance. Simulation results demonstrate that compared with circular coupling structures, the proposed rectangular coupling mechanism with semi-encapsulated aluminum plates and bipolar plate-bipolar plate coils exhibits superior anti-misalignment performance, making it more suitable for wireless power supply to logistics sorting machines.
|
Received: 11 April 2025
|
|
|
|
Cite this article: |
LIU Xia,SHAO Xuan,TAO Guobin. Design of wireless power supply coupling mechanism for logistics sorting machines[J]. Electrical Engineering, 2025, 26(9): 45-53.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I9/45
|
[1] 陈雨晨, 陈凯楠, 郑树轩, 等. 无线电能传输磁耦合机构磁心解析模型与设计方法[J]. 电气技术, 2022, 23(6): 83-92. [2] LIU Wei, CHAU K T, LEE C H T, et al. Wireless power and drive transfer for piping network[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2345-2356. [3] WANG Hui, CHAU K T, LIU Wei, et al.A novel speed-sensorless wireless universal motor with bidirectional movement[C]//2023 IEEE International Magnetic Conference-Short Papers (INTERMAG Short Papers), Sendai, Japan, 2023: 1-2. [4] 高云, 解超, 张高航, 等. 计及电动汽车接入的园区综合能源系统低碳协调运行调度策略[J]. 电气技术, 2025, 26(2): 14-25, 34. [5] 周岩, 刘志丹, 李烁涵. 虚拟多输入多输出无线电能与信息同步传输技术[J]. 电工技术学报, 2024, 39(14): 4282-4293. [6] 窦润田, 张献, 李永建, 等. 磁耦合谐振无线电能传输系统电磁屏蔽应用发展与研究综述[J]. 中国电机工程学报, 2023, 43(15): 6020-6039. [7] 潘文璇, 刘超, 张艺明, 等. 电动汽车磁场与电场混合耦合型无线电能传输技术综述[J]. 电源学报, 2022, 20(6): 34-41. [8] 张保坤, 邓钧君, 王震坡, 等. 电动汽车双向无线电能传输系统研究综述[J]. 机械工程学报, 2025, 61(8): 170-192. [9] 史光耀. 初级绕组并联的动态无线电能传输技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [10] 康中尉, 罗飞路. 矩形激励线圈的磁场分析[J]. 传感器世界, 2003, 9(2): 5-9. [11] 朱爽鑫. 基于ICPT的分拣机器人无线充电系统研究与设计[D]. 上海: 上海工程技术大学, 2019. [12] 荣灿灿, 段晓宇, 陈蒙蒙, 等. 基于双正交DD-双组合式螺线管的强抗偏移性无人机无线电能传输系统[J/OL]. 电工技术学报, 1-13 (2025-03-10) [2025- 06-13]. https://doi.org/10.19595/j.cnki.1000-6753.tces.242249. [13] 刘雨浩, 费叶琦, 潘知瑶, 等. 物流分拣设备的发展现状与展望[J]. 机电工程技术, 2023, 52(1): 59-62, 171. [14] 刘幸幸. 基于有限元分析的无线电能传输动态特性研究[D]. 大庆: 东北石油大学, 2018. [15] 顾文超. 基于宇称时间对称理论的电场磁场混合耦合式无线电能传输系统研究[D]. 广州: 华南理工大学, 2023. [16] 胡秀芳, 王跃, 吕双庆, 等. 基于激活函数的LCC-S型无线电能传输系统建模和稳定性分析[J]. 电工技术学报, 2023, 38(6): 1553-1563. [17] 郭星, 刘利强, 齐咏生, 等. 基于LCL-LCL/S混合自切换谐振式无线充电系统[J]. 电工技术学报, 2022, 37(10): 2422-2434. |
|
|
|