|
|
|
| A way to cultivate students' ability to solve complex engineering problems under the background of new quality productive forces |
| ZHU Guang, SHI Yanqiong, ZHANG Runmei |
| School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601 |
|
|
|
|
Abstract Cultivating students' ability to solve complex engineering problems is the core goal of engineering education in colleges and universities in China. With the introduction of the concept of “new quality productive forces”, this ability has been given a new connotation, and the goal of talent training in colleges and universities needs to be adjusted accordingly. This paper first expounds the core significance of new quality productive forces, and analyzes its new requirements for talent training in colleges and universities based on the characteristics of complex engineering problems. Then, this paper summarizes the main problems in the current talent training, and takes the automation major of Anhui Jianzhu University as an example to explore how to build a scientific and effective talent training path around the “ability to solve complex engineering problems” in the context of new quality productivity. Practice has proved that this reform path can enhance the comprehensive ability of students, improve the quality of talent training, and provide reference and practical support for the high-quality development of engineering education in colleges and universities.
|
|
Received: 24 February 2025
|
|
|
|
| Cite this article: |
|
ZHU Guang,SHI Yanqiong,ZHANG Runmei. A way to cultivate students' ability to solve complex engineering problems under the background of new quality productive forces[J]. Electrical Engineering, 2025, 26(10): 42-48.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I10/42
|
[1] 马一丹. 解决复杂工程问题能力及其培养的研究: 基于TRIZ方法在土木工程专业的学习与运用视角[D]. 重庆: 重庆大学, 2021. [2] International Engineering Alliance. Graduate attributes and professional competences[EB/OL]. [202106]. https://www.ieagreements.org/assets/Uploads/IEA- Graduate-Attributes-and-Professional-Competencies-2021.1-Sept-2021.pdf. [3] 鲁春燕, 李炜, 刘微容, 等. 工程教育专业认证背景下控制类课程群体系构建与实践[J]. 电气技术, 2022, 23(12): 58-59. [4] 魏玉书, 乔庆东. 新质生产力视角下高校拔尖创新人才培养的现实困境与优化策略[J]. 现代教育管理, 2024(12): 11-19. [5] 谢幼如, 李草茵, 李成军, 等. 智能时代高校数字课程: 内涵、形态与构建[J]. 电化教育研究, 2024, 45(11): 5-10. [6] 中国工程教育专业认证协会. 工程教育认证通用标准解读及使用指南 (2022版)[Z]. 北京, 2022. [7] 许贤泽, 徐逢秋. 工科大学生解决复杂工程问题能力的培养[J]. 测绘通报, 2020(5): 142-145. [8] 眭依凡, 应荣球, 何志伟. 新质生产力发展与高水平应用型大学人才培养模式创新行动[J]. 现代教育管理, 2024(11): 1-13. [9] 李晓华. 新质生产力的主要特征与形成机制[J]. 人民论坛, 2023(21): 15-17. [10] 李威, 凌祥. 储能科学与工程本科教育模式的创新与探索: 新质生产力要求下的新工科教育[J]. 高等工程教育研究, 2024(5): 21-26. [11] 黎明. 新质生产力引领高素质技能人才培养质量提升的机理、困境与对策[J]. 教育与职业, 2024(19): 50-55. [12] 张春, 金震妮, 刘世林. 新工科背景下专业课程的教学改革与实践: 以“供配电技术”课程为例[J]. 韶关学院学报, 2019, 40(11): 87-91. [13] 唐浩, 杨毅刚, 安利强. 工程思维能力的培养: 内涵、逻辑与路径[J]. 高等工程教育研究, 2024(2): 71-78. [14] 段斌, 付子康. 《华盛顿协议》毕业要求框架下课程体系设置合理性评价的计算思维方法[J]. 电气技术, 2022, 23(12): 65-66. [15] 朱娟娟, 贺王鹏, 郭宝龙. 新工科电气电子类课程改革与实践: 以“信号与系统”为例[J]. 电气技术, 2024, 25(10): 73-75. [16] 杨勇, 李红斌, 文劲宇, 等. 新工科电气工程实践教学体系重构与实践[J]. 电工技术学报, 2022, 37(19): 5075-5077. [17] 张蓉, 文劲宇, 李红斌, 等. 新工科背景下课程思政系统设计与实施[J]. 电工技术学报, 2023, 38(11): 3094-3096. [18] 史敬灼. 工程教育专业认证背景下的形成性评价[J]. 电气技术, 2022, 23(10): 59-66. |
|
|
|