|
|
|
| Application of supercapacitor energy storage in short-time and high-frequency power supplementation scenes in new-generation power system |
| LI Jinghua1, WU Pengyue1, LI Gengfeng2, LI Min3, WU Qiang4 |
1. Xi' an Thermal Power Research Institute Co., Ltd, Xi' an 710054; 2. School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049; 3. Datang Shaanxi Power Generation Co., Ltd, Xi' an 710000; 4. Shaanxi Comprehensive Energy Group Co., Ltd, Xi' an 710061; |
|
|
|
|
Abstract The “double high” characteristics of the new-generation power system make its stability face great challenges. Energy storage technology has become a key core technology to ensure the stable operation of the new-generation power system. As a typical short-time high-frequency energy storage technology, supercapacitor has the characteristics of high power, long cycle life and high security, which is suitable for power frequency regulation, voltage and inertia support, wind turbine pitch control, new energy power fluctuation suppression, vehicle-to-grid interaction and other application scenarios. Supercapacitor has become one of the important new energy storage technology routes. However, there is currently a lack of systematic research on supercapacitor energy storage application and analyses of its technical applicability in specific scenarios. This paper starts from the key issues faced by the new-generation power systems and the basic characteristics of supercapacitor energy storage, reviews the current application status of supercapacitor energy storage technology in the context of short-time and high-frequency power supplementation scenes in new-generation power systems, and uses the method of comparative analysis to illustrate the technical advantages of supercapacitors in different application scenarios, aiming to support the safe and stable operation of modern power systems and the integration of renewable energy using supercapacitor energy storage technology.
|
|
Received: 30 May 2025
|
|
|
|
| Cite this article: |
|
LI Jinghua,WU Pengyue,LI Gengfeng等. Application of supercapacitor energy storage in short-time and high-frequency power supplementation scenes in new-generation power system[J]. Electrical Engineering, 2025, 26(11): 18-26.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I11/18
|
[1] 谢小荣, 贺静波, 毛航银, 等. “双高”电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475. [2] 舒印彪. 发展新型电力系统助力实现“双碳”目标[J]. 中国电力企业管理, 2021(7): 8-9. [3] 闵勇, 陈磊, 刘瑞阔, 等. 电力系统频率动态中惯量与惯量响应特性辨析[J]. 中国电机工程学报, 2023, 43(3): 855-868. [4] 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169. [5] 刘云鹏, 李乐, 韩颖慧, 等. 电化学超级电容器电极材料研究进展[J]. 华北电力大学学报(自然科学版), 2016, 43(6): 80-90. [6] 金勇, 黄先进, 石春珉, 等. 城市轨道交通地面储能技术应用综述[J]. 电工技术学报, 2024, 39(15): 4568-4582, 4642. [7] 电力储能用超级电容器: DL/T 2080—2020[S] DL/T 2080—2020[S]. 北京: 中国电力出版社, 2020. [8] 超级电容器第1部分: 总则: GB/T 34870 GB/T 34870.1—2017[S]. 北京: 中国标准出版社, 2017. [9] SEETHA LAKSHMI K C, VEDHANARAYANAN B. High-performance supercapacitors: a comprehensive review on paradigm shift of conventional energy storage devices[J]. Batteries, 2023, 9(4): 202. [10] BHOJANE P.Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its under- standing[J]. Journal of Energy Storage, 2022, 45: 103654. [11] NADEEM F, SUHAIL HUSSAIN S M, TIWARI P K, et al. Comparative review of energy storage systems, their roles, and impacts on future power systems[J]. IEEE Access, 2018, 7: 4555-4585. [12] LIEW C W, RAMESH S, AROF A K.Enhanced capacitance of EDLCs (electrical double layer capa- citors) based on ionic liquid-added polymer elec- trolytes[J]. Energy, 2016, 109: 546-556. [13] SAHAY K, DWIVEDI B.Supercapacitors energy storage system for power quality improvement: an overview[J]. Journal of Electrical Systems, 2009, 5(4): 1-8. [14] SCHINDALL J.The charge of the ultracapacitors[J]. IEEE Spectrum, 2007, 44(11): 42-46. [15] 黄策, 燕云飞, 沈迎, 等. 超容储能辅助火电机组调频的电气问题研究[J]. 电气技术, 2022, 23(8): 103-108. [16] 牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用[J]. 热力发电, 2018, 47(5): 29-34. [17] 肖春梅. 电储能提升火电机组调频性能研究[J]. 热力发电, 2021, 50(6): 98-105. [18] AKRAM U, NADARAJAH M, SHAH R, et al.A review on rapid responsive energy storage tech- nologies for frequency regulation in modern power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109626. [19] 王伟, 陈钢, 常东锋, 等. 超级电容辅助燃煤机组快速调频技术研究[J]. 热力发电, 2020, 49(8): 111-116. [20] 李菁华, 兀鹏越, 黄富强, 等. 超级电容混合储能辅助火电机组AGC调频容量配置方案研究与应用[J]. 热力发电, 2025, 54(7): 101-110. [21] KHAZALI A, REZAEI N, SABOORI H, et al.Using PV systems and parking lots to provide virtual inertia and frequency regulation provision in low inertia grids[J]. Electric Power Systems Research, 2022, 207: 107859. [22] 马秀达, 卢宇, 田杰, 等. 柔性直流输电系统的构网型控制关键技术与挑战[J]. 电力系统自动化, 2023, 47(3): 1-11. [23] GE Baoming, WANG Wenliang, BI Daqiang, et al.Energy storage system-based power control for grid- connected wind power farm[J]. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 115-122. [24] 刘剑, 田炜, 鲁斌, 等. 基于超级电容的海上风电机组电动变桨系统设计[J]. 可再生能源, 2014, 32(10): 1474-1478. [25] 唐坤, 张广明, 欧阳慧珉, 等. 超级电容在风力发电中的应用及未来发展[J]. 电源技术, 2015, 39(5): 1114-1117. [26] Battery Technology. GUERRA M: supercapacitors: a game changer for the wind turbine industry[EB/OL]. (2022-08-25)[2024-07-16]. https://www.batterytechon-line.com/components/supercapacitors-a-game-changer-for-the-wind-turbine-industry.html. [27] 刘永奇, 陈龙翔, 韩小琪. 能源转型下我国新能源替代的关键问题分析[J]. 中国电机工程学报, 2022, 42(2): 515-524. [28] 陶霞, 方东平, 汪莹洁, 等. 基于最大功率点跟踪下垂控制的光储一体化系统研究[J]. 电气技术, 2024, 25(4): 38-46. [29] 高帆, 包道日娜, 赵明智, 等. 多场景规划下混合储能对风光耦合出力波动的平抑特性[J]. 电工技术学报, 2025, 40(9): 2827-2839. [30] 刘语忱, 闫群民, 郭阳, 等. 基于完备局部均值分解和相关分析的光伏发电侧电-氢混合储能优化配置[J]. 电气技术, 2022, 23(11): 21-29. [31] 张步涵, 曾杰, 毛承雄, 等. 串并联型超级电容器储能系统在风力发电中的应用[J]. 电力自动化设备, 2008, 28(4): 1-4. [32] 郑新昊, 祝龙记. 光伏直流微电网超级电容储能控制策略研究[J]. 可再生能源, 2020, 38(4): 497-501. [33] MASAKI M S, ZHANG Lijun, XIA Xiaohua.A hierarchical predictive control for supercapacitor- retrofitted grid-connected hybrid renewable systems[J]. Applied Energy, 2019, 242: 393-402. [34] 乔志军, 阮殿波. 超级电容在城市轨道交通车辆中的应用进展[J]. 铁道机车车辆, 2019, 39(2): 83-86, 90. [35] 滕世平. 基于车载超级电容储能系统在城市轨道交通的应用[J]. 储能科学与技术, 2022, 11(7): 2398-2399. [36] MEISHNER F, SAUER D U.Wayside energy recovery systems in DC urban railway grids[J]. eTransportation, 2019, 1: 100001. [37] 美通社. ABB在节能型轻轨系统中采用Maxwell超级电容器[EB/OL]. (2014-04-15)[2024-07-25]. https://www.prnasia.com/story/95964-1.shtml. [38] 人民日报社中国经济周刊-经济网. 李永华: 国产超级电容储能装置在广州运行可回收制动能量[EB/OL]. (2016-12-01)[2024-07-19]. https://news.bjx. com.cn/html/20161201/793234.shtml. [39] 马耀东, 刘晓晖, 陆学文. 一种基于超级电容的新型再生制动能量回收装置在地铁牵引供电系统中的应用[J]. 机电信息, 2017(18): 30-31. [40] 钟志宏, 李炎, 米佳雨, 等. 基于牵引网电压和空载电压的多储能系统区间能量管理策略[J]. 电工技术学报, 2024, 39(15): 4583-4598. [41] 刘栋晨, 季昱, 胡岳. 交能融合V2G技术研究与实践综述[J]. 上海交通大学学报, 2025, 59(1): 1-15. [42] ISLAM S, IQBAL A, MARZBAND M, et al.State- of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives[J]. Rene- wable and Sustainable Energy Reviews, 2022, 166: 112574. [43] 孟明, 腊志源, 王喜平, 等. 基于光热电站与电动汽车的综合能源系统风电消纳策略[J]. 热力发电, 2022, 51(9): 42-53. [44] 王晓姬, 王道涵, 王柄东, 等. 电动汽车驱动/充电一体化系统及其控制策略综述[J]. 电工技术学报, 2023, 38(22): 5940-5958. [45] 周椿奇, 向月, 张新, 等. V2G辅助服务调节潜力与经济性分析: 以上海地区为例[J]. 电力自动化设备, 2021, 41(8): 135-141. |
|
|
|