|
|
|
| Curriculum support design for graduation requirement observation points in computational thinking and critical thinking |
| DUAN Bin1, ZHOU Jing1, SHI Jinjing2, KUANG Yi1 |
1. College of Automation and Electronic Information, Xiangtan University, Xiangtan, Hunan 411105; 2. School of Electronic Information, Central South University, Changsha 410004 |
|
|
|
|
Abstract To meet the demands of the information and intelligent era, the Engineering Education Accreditation Standards have introduced new evaluation criteria for “computational thinking” and “critical thinking”, aiming to cultivate students' ability to apply computational thinking in solving complex engineering problems and achieve innovation and lifelong learning through critical thinking. However, course design faces challenges such as confounding factor interference, static evaluation systems, and a lack of dynamic optimization mechanisms, making it difficult to effectively support the achievement of these two criteria. To address these issues, this paper, based on causal science theory, proposes the method of “mediator-based confounding elimination” to accurately quantify the causal effects of teaching interventions. Taking the “energy cyber-physical systems” course as an example, it demonstrates how mediator variables can be introduced to eliminate confounding factor interference, quantify teaching intervention effects, and achieve continuous course improvement.
|
|
Received: 31 March 2025
|
|
|
|
| Cite this article: |
|
DUAN Bin,ZHOU Jing,SHI Jinjing等. Curriculum support design for graduation requirement observation points in computational thinking and critical thinking[J]. Electrical Engineering, 2025, 26(11): 27-33.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2025/V26/I11/27
|
[1] 鲁春燕, 李炜, 刘微容, 等. 工程教育专业认证背景下控制类课程群体系构建与实践[J]. 电气技术, 2022, 23(12):58-59. [2] 段斌, 付子康. 《华盛顿协议》毕业要求框架下课程体系设置合理性评价的计算思维方法[J]. 电气技术, 2022, 23(12): 64-69. [3] HERMAN M A, ROBINS J M.Causal inference: what if[M]. Boca Raton, FL: Chapman & Hall/CRC, 2020. [4] ATHEY S, IMBENS G.Machine learning methods that economists should know about[J]. Annual Review of Economics, 2019, 11: 685-725. [5] 钱辰, 旷怡, 章兢. 基于前门调整法的“项目式学习”过程考核设计与课程质量评价[J]. 电气技术, 2022, 23(10): 74-79. [6] 史敬灼. 工程教育专业认证背景下的形成性评价[J]. 电气技术, 2022, 23(10): 59-66. [7] REPKO A F, SZOSTAK R.Interdisciplinary research: process and theory[M]. Thousand Oaks, CA: SAGE Publications, 2020. [8] ZHAI Xuesong, CHU Xiaoyan, CHAI C S, et al.A review of artificial intelligence (AI) in education from 2010 to 2020[J]. Complexity, 2021, 2021: 1-18. [9] HABIB S, VOGEL T, ANLI X, et al.How does gen- erative artificial intelligence impact student creati- vity?[J]. Journal of Creativity, 2024, 34(1): 100072. [10] 王思遥, 黄亚婷. 促进或抑制: 生成式人工智能对大学生创造力的影响[J]. 中国高教研究, 2024(11): 29-36. [11] 戚佳, 徐艳茹, 刘继安, 等. 生成式人工智能工具使用对高校学生批判性思维与自主学习能力的影响[J]. 电化教育研究, 2024, 45(12): 67-74. [12] 黄时进. “助”与“替”: 生成式AI对学术研究的双重效应[J]. 上海师范大学学报(哲学社会科学版), 2024, 53(2): 65-74. [13] 彭兰. 界限的漂移与主体性的守护: 智能化内容生产潮流下人的主体性问题反思[J]. 苏州大学学报(哲学社会科学版), 2024, 45(5): 159-170. [14] 朱娟娟, 贺王鹏, 郭宝龙. 新工科电气电子类课程改革与实践: 以“信号与系统”为例[J]. 电气技术, 2024, 25(10): 73-75. [15] 杨勇, 李红斌, 文劲宇, 等. 新工科电气工程实践教学体系重构与实践[J]. 电工技术学报, 2022, 37(19): 5074-5080. [16] 张蓉, 文劲宇, 李红斌, 等. 新工科背景下课程思政系统设计与实施[J]. 电工技术学报, 2023, 38(11): 3094-3100. [17] CHEN Angxuan, XIANG Mengtong, ZHOU Junyi, et al.Unpacking help-seeking process through multi- modal learning analytics: a comparative study of ChatGPT vs human expert[J]. IEEE Computers & Education, 2025, 226: 105198. |
|
|
|