|
|
Correction Method for Short Term Wind Speed Forecasting Results Based on Mathematical Statistics |
Wang Shiqian, Tian Chunzheng, Huang Jinghui |
He’nan Electric Power Corporation Economic Research Institute, Zhengzhou 450052 |
|
|
Abstract To accurately forecast short-term wind speed can effectively reduce the adverse effects of wind power in power systems and improve the competition of wind power in power markets. Because of the strong randomicity of wind, the forecasting method at wind mutation points are greatly improved, and through improve the forecasting method itself cannot obtain more favorable effect. From the angle of revision, a revision method was proposed and applied to revision the forecast wind speed in this paper, which based on the historical data wave characteristics and confidence level. Under this method, we can turned the original forecast wind speed into the optimized forecast wind speed. The revision method applies to all short-term wind prediction methods. The validity and feasibility of the method was verified through the real example of a wind speed forecasting method based on the Grey model.
|
Received: 26 June 2014
Published: 23 January 2014
|
|
|
|
Cite this article: |
Wang Shiqian,Tian Chunzheng,Huang Jinghui. Correction Method for Short Term Wind Speed Forecasting Results Based on Mathematical Statistics[J]. Electrical Engineering, 2013, 14(11): 11-15.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2013/V14/I11/11
|
[1] 杨茂, 熊昊, 严干贵, 等.基于数据挖掘和模糊聚类的风电功率实时预测研究[J].电力系统保护与控制, 2013, 41(1):1-6. [2] 谷国利, 王维庆, 张新燕, 等.风电场风速预测方法的研究[J].农业工程学报:新能源产业, 2009(6):22-24. [3] 卿湘运, 杨富文, 王行愚.采用贝叶斯–克里金–卡尔曼模型的多风电场风速短期预测[J].中国电机工程学报, 2012, 32(35):107-114. [4] TORRES J L, GARCIA A, BLAS M D, et a1. Forecast of hourly average wind speed with ARMA models in navarre(Spain)[J].Solar Energy, 2005, 79:65-77. [5] 张宏宇, 印永华, 申洪, 等.基于概率测度变换的风速时间序列建模方法[J].电力系统自动化, 2013, 37(2):7-10. [6] BARBOUNIS T G, THEOCHARIS J B, ALEXIADIS M C, et a1.Long-term wind speed and power forecasting using local recurrent neural network Models[J]. Transactions on energy conversion, 2006, 21(1): 273-284. [7] 黄小华, 李德源, 吕文阁.基于人工神经网络模型的风速预测[J].太阳能学报, 2011, 32(2):193-197. [8] ALEXIADIS M, DOKOPOULOS P, SAHSAMANOGLOU H, et a1.Short term forecasting of wind speed and related electrical power[J].Solar Energy, 1998, 63(1): 61-68. [9] BARBOUNIS T G, THEOCHARIS J B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation[J]. Neurocomputing, 2007, 70(15):25–42. [10] 郭虎全, 刘吉臻, 柳玉, 等.基于小波包分析的风速预测研究[J].华东电力, 2011, 39(12): 2077-2079 [11] 罗文, 王莉娜.基于小波分解与遗传算法和支持向量机的短期风速预测[J].太阳能学报, 2012, 33(8): 1327- 1333. [12] 刘辉, 田红旗, 李燕飞.基于小波分析法与滚动式时间序列法的风电场风速短期预测优化算法[J].中南大学学报(自然科学版), 2010, 41(1):370–375. [13] 蔡凯, 谭伦农, 等.时间序列与神经网络法相结合的短期风速预测[J].电网技术, 2008, 32(8):82-85. [14] 杨秀媛, 肖洋, 陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报, 2005, 25(11):1-5. [15] 杜松怀, 温步瀛, 蒋传文.电力市场[M].3版.北京:中国电力出版社, 2008:107-108. |
|
|
|