Abstract:When the short-term load changes greatly, it is difficult to accurately predict it. A short-term holiday load forecasting algorithm based on filter algorithm is presented. The Kalman filter and Wiener filter prediction theory are introduced briefly. Combing with the actual situation of power load, the appropriate short-term load forecasting models are established. Load is predicted for holidays, confirmed the feasibility and effectiveness of the load forecasting algorithms. And the two predication algorithms are compared. For the accuracy is not high when the loads have a great oscillation, it discusses the causes of error in the filter algorithm. On these basis, the forecasting results are modified by introducing the holiday factor. The comprehensive forecasting results have high precision, which confirm the validity and effectiveness of the advanced algorithm.
[1] 康重庆,夏清,刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社, 2007. [2] 周潮,邢文洋,李宇龙. 电力系统负荷预测方法综述[J]. 电源学报, 2012, 06: 32-39. [3] 邰能灵,侯志俭,李涛,等. 基于小波分析的电力系统短期负荷预测方法[J]. 中国电机工程学报, 2003(1): 46-51. [4] OSMAN Z H, AWAD M L, MAHMOUD T K. Neural network based approach for short-term load forecas- ting[C]. in Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES. 2009. [5] LIMIN H Short-Term Load Forecasting Based on the Method of Genetic Programming[C]. in Mecha- tronics and Automation, 2007. ICMA 2007. Interna- tional Conference on. 2007. [6] SABRI Y, HARIYANTO N, Fitriana F. Spatial short- term load forecasting using grey dynamic model specific in tropical area[C]. in Electrical Engineering and Informatics(ICEEI), 2011 International Conference on. 2011. [7] OONSIVILAI A, EL-HAWARY M E. Wavelet neural network based short term load forecasting of electric power system commercial load[C]. in Electrical and Computer Engineering, 1999 IEEE Canadian Confe- rence on. 1999. [8] HUANG Y, LI D, GAO L. Power system short-term load forecasting based on neural network with artificial immune algorithm. in Control and Decision Conference (CCDC), 2012 24th Chinese. 2012. [9] DU X H, TIAN F, TAN S. Study of Power System Short-term Load Forecast Based on Artificial Neural Network and Genetic Algorithm[C]. in Computational Aspects of Social Networks (CASoN), 2010 International Conference on. 2010 [10] 吴凯,周西峰,郭前岗. 基于粒子群神经网络的负荷预测方法研究[J]. 电测与仪表, 2013(3): 29-32. [11] 李明干,孙健利,刘沛. 基于卡尔曼滤波的电力系统短期负荷预测[J]. 继电器, 2004(4): 9-12. [12] 张民,鲍海,晏玲,等. 基于卡尔曼滤波的短期负荷预测方法的研究[J]. 电网技术, 2003(10): 39-42. [13] GUAN C. Hybrid Kalman Filters for Very Short-Term Load Forecasting and Prediction Interval Estimation. Power Systems, IEEE Transactions on Power Systems, IEEE Transactions on Power Systems, IEEE Transactions on, 2013. PP(99): p. 1-12. [14] 尤承佳,黄坚,吴国忠. 维纳滤波在短期负荷预测中的应用[J]. 江苏电机工程, 2006(5): 50-52. [15] 王炳和. 现代数字信号处理[M]. 西安:西安电子科技大学出版社, 2011. 11. [16] 周浩敏,王睿. 测试信号处理技术[M]. 北京:北京航空航天大学出版社, 2009. [17] 李征,张志杰. 特殊节假日的短期电力负荷预测新方法[J]. 东华大学学报(自然科学版), 2006(2): 67-70. [18] 刘皓明,余昆,梁进国,等. 特殊节假日的短期负荷预测新方法[J]. 电力需求侧管理, 2006(5): 14-16. [19] 王科,陈丽华. 基于卡尔曼滤波的节假日短期负荷预测[J]. 电气技术, 2014(1): 4-6.