Abstract:The sliding contact between the pantograph and the overhead catenary is the only way for the electric vehicle to collect current, which is easily influenced by the stochastic disturbances. In this paper, a catenary model with time-varying mass and stiffness is established and the pantograph is considered a 2-degree of freedom (DOF) model. And the uncertain disturbance is included to compensate the perturbations of nonlinear effect from catenary to pantograph. A sliding mode surface is properly defined to reduce the variation of contact force. In order to decrease the effect of other uncertain disturbance, a disturbance compensator is included to estimate the disturbance in each discrete time step. Several numerical examples indicate that the proposed controller can effectively reduce the contact force fluctuation, as well as eliminate the contact loss.
刘涛, 鲁小兵, 张佳怡. 考虑随机扰动的高速铁路弓网系统滑模控制研究[J]. 电气技术, 2022, 23(3): 57-62.
LIU Tao, LU Xiaobing, ZHANG Jiayi. Study on the pantograph active control based on the slide mode control method considering the stochastic disturbance. Electrical Engineering, 2022, 23(3): 57-62.
[1] 张宗芳, 刘文正, 张坚, 等. 基于响应面法的高速铁路接触网参数优化研究[J]. 铁道标准设计, 2019, 63(9): 130-137. [2] XU Zhao, SONG Yang, LIU Zhigang.Effective measures to improve current collection quality for double pantographs and catenary based on wave propagation analysis[J]. IEEE Transactions on Vehicular Technology, 2020, 69(6): 6299-6309. [3] 关金发, 田志军, 吴积钦. 受电弓与接触网系统方案设计方法及其应用[J]. 铁道标准设计, 2020, 64(2): 162-167. [4] 唐周林. 基于正交试验法的高铁弓网动态性能优化研究[D]. 成都: 西南交通大学, 2017. [5] ZHANG Jian, LIU Wenzheng, LIU Zongfang.Sensitivity analysis and research on optimization methods of design parameters of hig-speed railway catenary[J]. IET Electrical Systems in Transportation, 2019, 9(3): 150-156. [6] 刘方林. 不同张力等级下电气化铁路弓网电能传输特性研究[J]. 电气技术, 2017, 18(12): 86-89. [7] CHU Wenping, SONG Yang, DUAN Fuchuan, et al.Development of steady arm damper for electrified railway overhead contact line with double pantographs based on numerical and experimental analysis[J]. IET Electrical Systems in Transportation, 2021, 11(3): 269-277. [8] ZHOU Ning, ZHANG Weihua.Investigation on dynamic performance and parameter optimization design of pantograph and catenary system[J]. Finite Elements in Analysis and Design, 2011, 47(3): 288-295. [9] CHO Y H.Analysis of the major design parameters of a pantograph-railway catenary system for improving the current collection quality[J]. Journal of the Korean Society for Railway, 2014, 17(1): 7-13. [10] WANG Wenlin, LIANG Yuwen, ZHANG Weihua, et al.Effect of the nonlinear displacement-dependent characteristics of a hydraulic damper on high-speed rail pantograph dynamics[J]. Nonlinear Dynamics, 2019, 95(4): 3439-3464. [11] 罗维, 陈明国, 刘海波. 中国标准动车组受电弓主动控制单元设计[J]. 电力机车与城轨车辆, 2019(2): 42-44. [12] 鲁小兵, 刘志刚, 宋洋, 等. 受电弓主动控制综述[J]. 交通运输工程学报, 2014(2): 53-65. [13] 赵萌, 刘晓禹, 贾彦, 等. 横风作用下高速列车受电弓滑板的气动特性分析[J]. 内蒙古工业大学学报 (自然科学版), 2018, 37(5): 374-381. [14] 牛纪强, 梁习锋, 周丹. 高速列车过车站受电弓气动冲击载荷研究[J]. 振动工程学报, 2017, 30(2): 333-340. [15] 杨晶, 朴明伟, 高文斌, 等. 基于轮轨弓网双耦合的高速受电弓横向减振技术对策[J]. 计算机集成制造系统, 2019, 25(8): 1908-1919. [16] 林光华, 邓磊, 王潇, 等. 受电弓升弓控制回路测试与分析[J]. 电器与能效管理技术, 2020(11): 46-51. [17] 王江文, 梅桂明, 李瑞平, 等. 弓网相互作用时受电弓关键部件动载荷研究[J]. 铁道学报, 2018, 40(3): 68-75. [18] 鲁小兵. 基于状态估计的高速铁路受电弓主动控制方法研究[D]. 成都: 西南交通大学, 2018. [19] Railway applications. Current collection systems. Validation of simulation of the dynamic interaction between pantograph and overhead contact line: BS EN 50318—2018[S]. UK: BSI Standards Limited, 2018. [20] 孙宜标, 仲原, 刘春芳. 基于LMI的直线伺服滑模位移跟踪控制[J]. 电工技术学报, 2019, 34(1): 33-40. [21] 王江彬, 刘凌, 刘崇新. 基于扩张状态观测器七阶混沌振荡电力系统的滑模变结构控制[J]. 电工技术学报, 2020, 35(21): 4524-4531. [22] 何亚华, 王丽梅. 基于双层交叉耦合的直驱H型平台滑模轮廓控制[J]. 电气技术, 2021, 22(8): 10-14. [23] 杨杰, 黄晨, 石恒. 径向基函数神经网络补偿的悬浮球悬浮高度自适应滑模控制[J]. 电气技术, 2020, 21(2): 31-35. [24] SANCHEZ-REBOLLO C, JIMENEZ-OCTAVIO J R, CARNICERO A. Active control strategy on a catenary-pantograph validated model[J]. Vehicle System Dynamics, 2013, 51(4): 554-569.