电气技术  2024, Vol. 25 Issue (1): 1-7    DOI:
研究与开发 |
基于变分模态分解能量熵混合时域特征和随机森林的故障电弧检测方法
董志文1,2, 苏晶晶1,3
1.闽江学院计算机与控制工程学院,福州 350118;
2.福建理工大学电子电气与物理学院,福州 350108;
3.浙江省机电设计研究院有限公司,杭州 310051
Art fault detection method based on variational mode decomposition energy entropy hybrid time domain feature and random forest
DONG Zhiwen1,2, SU Jingjing1,3
1. College of Computer and Control Engineering, Minjiang University, Fuzhou 350118;
2. School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350108;
3. Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd, Hangzhou 310051
全文: PDF (1617 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 在家庭生活用电器中,非线性负载电器逐渐增多。这一趋势使基于电弧“零休”特性的传统故障电流检测方法无法准确识别故障现象,因此本文提出一种基于信号时域特征结合变分模态分解固有模态能量熵的随机森林故障电弧识别方法。以线路电流为分析对象,先提取其时频特征量,再采用变分模态分解算法对故障电弧电流进行分解得到模态分量并计算其能量熵。以时域、能量熵特征构成多维特征向量,输入随机森林模型中对信号类型进行分类决策,进而识别故障电弧。实验发现,相比于其他方法,本文所提方法的故障电弧识别准确率可达99%,且适用于多种典型负载和非线性负载工作的低压配电故障电弧识别。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
董志文
苏晶晶
关键词 故障电弧能量熵随机森林负载分类故障诊断    
Abstract:In household appliances, nonlinear load devices continue to grow, which makes the limitations of traditional fault current detection methods based on "zero crossing" characteristics become evident. This paper introduces a novel approach for fault arc identification, combining signal time domain features with variational mode decomposition (VMD) intrinsic modal energy entropy. The analysis focuses on line current, initially extracting time-frequency features. Subsequently, the VMD algorithm decomposes the fault arc current into intrinsic mode function (IMF), and their energy entropy is computed. By leveraging both time-domain and energy entropy features, a multidimensional feature vector is employed for fault arc identification within a random forest model. Comparative experiments indicate that this method achieves an impressive fault arc identification accuracy of up to 99% and is suitable for diverse low-voltage distribution scenarios including various load types and nonlinear loads.
Key wordsarc fault    energy entropy    random forest    load classification    fault diagnosis   
收稿日期: 2023-10-31     
基金资助:福建省自然科学基金(2020J05170,2020J01434); 福建省高校产学合作项目(2021Y4002); 闽江学院科研项目(MYK21014)
作者简介: 董志文(1997—),男,福建南平人,硕士研究生,主要从事故障电弧检测研究工作。
引用本文:   
董志文, 苏晶晶. 基于变分模态分解能量熵混合时域特征和随机森林的故障电弧检测方法[J]. 电气技术, 2024, 25(1): 1-7. DONG Zhiwen, SU Jingjing. Art fault detection method based on variational mode decomposition energy entropy hybrid time domain feature and random forest. Electrical Engineering, 2024, 25(1): 1-7.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2024/V25/I1/1