Abstract:In the process of power quality disturbances identification, the wavelet decomposition level usually lack theoretical basis when using wavelet transform to extract energy difference distribution features and training samples for support vector machine (SVM) are usually in one condition of signal-noise ratio (SNR). For the above two questions, the wavelet decomposion level is decided by signal sampling rate when using wavelet doing multi-resolution analysis, which reduces the calculation time and the number of characteristic dimension, then the extracted energy distribution features are used as the input vector of SVM to train a SVM based classifier; Uniform SNR distribution is employed for training samples and enforces the generalization ability of SVM. The simulation results indicate that this improved method can accurately classify 6 types of PQ disturbances and the accuracy can still reach 95.20% even the SNR is 20dB.
陈华丰, 乔磊, 柳双林. 基于小波变换和支持向量机的电能质量扰动识别[J]. 电气技术, 2013, 14(02): 14-18.
Chen Huafeng, Qiao lei, Liu Shuanglin. Power Quality Disturbances Identification Using Decision Tree and Support Vector Machine. Electrical Engineering, 2013, 14(02): 14-18.
[1] 覃思师,刘前进.基于STFT变换和DAGSVMs的电能质量扰动识别[J].电力系统保护与控制, 2011, 39(1): 83-86, 103. [2] 赵凤展,杨仁刚.时频分析方法在电能质量扰动检测与识别中的应用[J].华北电力大学学报, 2006, 33(5): 33-37. [3] 陈珍萍,欧阳名三,刘淮霞.小波能量差分布和SVM结合的PQD识别[J].计算机工程与应用, 2011, 47(20): 241-244. [4] 秦英林,田立军,常学飞.基于小波变换能量分布和神经网络的电能质量扰动分类[J].电力自动化设备, 2009, 29(7): 64-67. [5] 胡为兵,李开成,张明,等.基于小波变换和分形理论的电能质量扰动监控系统[J].电网技术, 2008, 32(12): 51-55. [6] 罗滇生,何洪英,姚建刚.短时电能质量分类方法研究[J].计算机工程与应用, 2008, 44(17): 238-241. [7] LU G Y, FANG Q P. Classification of power quality disturbances using RVM and S-transform[J]. High Voltage Engineering, 2010, 36(10): 2565-2569. [8] BISWAL B, PANIGRAHI B K. Power quality disturbance classification using fuzzy C-Means algorithm and adaptive particle swarm optimization[J]. IEEE Transactions on Industrial Electronics, 2009, 56(1): 212-220. [9] LIAO Y, LEE J B. A fuzzy-expert system for classifying power quality disturbances[J]. International Journal of Electrical Power & Energy Systems, 2004, 26(2): 199-205. [10] 刘慧,刘国海,沈跃.采用提升小波包和相关向量机的 电能质量扰动分类[J].高电压技术, 2010, 36(3): 782-788. [11] 许童羽,朴在林,陈春玲.提升小波在暂态电能质量扰动检测与定位中的应用[J].农业工程学报, 2011, 27(5): 282-286. [12] 赵静,何正友,王丽霞,等.基于数学形态学与动态时间扭曲的电压扰动分类[J].西南交通大学学报, 2009, 44(2): 208-214. [13] 张斌,孙静.基于Mallat算法和快速傅里叶变换的电能质量分析方法[J].电网技术, 2007, 31(19): 35-40. [14] 郑勇涛,刘玉树.支持向量机解决多分类问题研究[J].计算机工程与应用, 2005, 30(23): 190-192.