研究与开发
|
基于改进型模块化嵌入式多电平换流器拓扑的HVDC直流故障清除策略
王婷, 杨明发
福州大学电气工程与自动化学院,福州 350116
HVDC DC fault clearing strategy based on improved MEMC topology
Wang Ting, Yang Mingfa
College of Electrical & Automation Engineering, Fuzhou University, Fuzhou 350116
摘要 目前,已有的高压柔性直流输电工程大多都采用包含半桥子模块的模块化多电平换流器(MMC),但是半桥型MMC缺乏直流故障清除能力。为解决这一问题本文在原来模块化嵌入式多电平换流器(MEMC)拓扑的基础上提出了改进型MEMC拓扑,该拓扑具有更高的可靠性和功率处理能力,并提出了一种控制技术,用全桥子模块产生的负电压对功率因数滞后的负载进行晶闸管的强制换相。改进型MEMC除具有直流故障清除能力外,还提供了更宽的工作范围和更小的子模块电容器尺寸。最后在PSCAD/EMTDC中搭建改进型MEMC-HVDC模型,并进行直流故障仿真,仿真结果验证了该拓扑的适用性和直流故障清除能力。
关键词 :
模块化多电平换流器 ,
改进型模块化嵌入式多电平换流器 ,
晶闸管换相 ,
直流故障清除
Abstract :At present, most of the existing high-voltage flexible DC transmission projects use modular multilevel converters (MMC) including half-bridge submodules, but half-bridge MMC lacks the ability to clear DC faults. In order to solve this problem, this paper proposes an improved MEMC topology based on the original MEMC (module embedded multilevel converter) topology, which has higher reliability and power handling capability, and proposes a control technology that uses The negative voltage generated by the sub-module performs forced commutation of the thyristor on the load with lagging power factor. In addition to the DC fault clearing capability, the improved MEMC also provides a wider operating range and a smaller sub-module capacitor size. Finally, an improved MEMC-HVDC model is built in PSCAD/EMTDC, and a DC fault simulation is carried out. The simulation results verify the applicability of the topology and the DC fault removal capability.
Key words :
modular multilevel converter (MMC)
improved module embedded multilevel converter (MEMC)
thyristor commutation
DC fault clearing
收稿日期: 2020-05-12
作者简介 : 王 婷(1996-),女,甘肃省张掖市人,硕士研究生,主要研究方向为柔性直流输电直流故障保护研究。
引用本文:
王婷, 杨明发. 基于改进型模块化嵌入式多电平换流器拓扑的HVDC直流故障清除策略[J]. 电气技术, 2020, 21(12): 17-22.
Wang Ting, Yang Mingfa. HVDC DC fault clearing strategy based on improved MEMC topology. Electrical Engineering, 2020, 21(12): 17-22.
链接本文:
http://dqjs.cesmedia.cn/CN/Y2020/V21/I12/17
[1] 马为民, 吴方劼, 杨一鸣, 等. 柔性直流输电技术的现状及应用前景分析[J]. 高电压技术, 2014, 40(8): 2429-2439. [2] 王渝红, 傅云涛, 曾琦, 等. 柔性直流电网故障保护关键技术研究综述[J]. 高电压技术, 2019, 45(8): 2362-2374. [3] LI X Q, SONG Q, LIU W H, et al.Protection of nonpermanent faults on DC overhead lines in MMC- based HVDC systems[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 483-490. [4] 郭晓茜, 崔翔, 齐磊. 架空线双极MMC-HVDC系统直流短路故障分析和保护[J]. 中国电机工程学报, 2017, 37(8): 2177-2184. [5] ZHANG D, DONG D, DATTA R, et al. Modular embedded multilevel converter for MV/HVDC appli- cations[J]. IEEE Transactions on Industry Applications, 2018, 54, (6): 6320-6331. [6] 熊银武, 钟昆禹, 王林, 等. 柔性直流输电换流阀型式试验补能电源研究[J]. 电气技术, 2020, 21(1): 37-40. [7] 周杨. 基于模块化多电平换流技术的柔性直流输电系统研究[D]. 杭州: 浙江大学, 2013. [8] 张建坡, 颜湘武, 田新成. MMC-HVDC混合阻断拓扑直流故障抑制[J]. 电工技术学报, 2017, 32(10): 61-68. [9] 李家羊, 岑韬, 张磊, 等. 提高柔性直流输电换流阀阀控系统性能的方法研究[J]. 电气技术, 2017, 18(12): 152-156. [10] 曹帅, 向往, 姚良忠, 等. 风电经混合型MMC- HVDC并网的交直流故障穿越策略[J]. 电力系统自动化, 2018, 42(7): 37-43, 49. [11] 马焕, 姚为正, 吴金龙, 等. 含桥臂阻尼的MMC- HVDC直流双极短路故障机理分析[J]. 电网技术, 2017, 41(7): 2099-2106. [12] 廖建权, 周念成, 王强钢, 等. 基于并联LCC分流及反压抑制的柔性直流输电故障清除策略[J]. 高电压技术, 2019, 45(1): 63-71. [13] 郭敬梅, 曾德辉, 王钢, 等. 基于辅助电路的MMC- HVDC直流故障处理策略[J]. 电力系统自动化, 2016, 40(16): 90-97. [14] 尹太元, 王跃, 段国朝, 等. 基于零直流电压控制的混合型MMC-HVDC直流短路故障穿越策略[J]. 电工技术学报, 2019, 34(增刊1): 343-351. [15] 谢志德, 杨明发. 基于混合旁路MMC-HVDC直流故障隔离技术研究[J]. 电气技术, 2017, 18(11): 39-43. [16] 周海鸿, 杨明发, 阮俊峰. MMC-HVDC输电系统直流故障隔离综述[J]. 电气技术, 2019, 20(1): 1-6. [17] 孔明, 汤广福, 贺之渊. 子模块混合型MMC-HVDC直流故障穿越控制策略[J]. 中国电机工程学报, 2014, 34(30): 5343-5351. [18] 李红梅, 行登江, 高扬, 等. 子模块混联MMC- HVDC系统直流侧短路故障电流抑制方法[J]. 电力系统保护与控制, 2016, 44(20): 57-64. [19] JUDGE P D, MERLIN M M C, GREEN T C, et al. Thyristor-bypassed sub-module power-groups for achieving high-efficiency, DC fault tolerant multilevel VSCs[J]. IEEE Transactions on Power Delivery, 2018, 33(1): 349-359. [20] ELSEROUGI A A, ABDEL-KHALIK A S, MASSOUD A M. A new protection scheme for HVDC converters against DC-side faults with current suppression capability[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1569-1577.
[1]
苏嘉彬, 陈斌, 熊静, 周亚龙, 羌丁建. 基于模块化多电平换流器的背靠背柔性直流换流站绝缘配合方案研究 [J]. 电气技术, 2020, 21(5): 84-89.
[2]
周海鸿, 杨明发, 阮俊峰. MMC-HVDC输电系统直流故障隔离综述 [J]. 电气技术, 2019, 20(1): 1-6.
[3]
唐志军. 柔性直流输电工程起动策略及时间定值整定 [J]. 电气技术, 2018, 19(4): 63-66.
[4]
曾欢, 李锐华, 胡波, 胡浩. 基于最大电压偏差裕度的MMC子模块均压优化算法研究 [J]. 电气技术, 2017, 18(9): 4-9.
[5]
邹焕雄, 李超, 胡文旺, 晁武杰. 厦门柔性直流输电工程真双极大功率试验方法研究 [J]. 电气技术, 2017, 18(6): 23-26.
[6]
谢志德, 杨明发. 基于混合旁路MMC-HVDC直流故障隔离技术研究 [J]. 电气技术, 2017, 18(11): 39-43.
[7]
康伟,龙云波,宗波,徐云飞. 集成化的模块化多电平换流器功率模计与研制 [J]. 电气技术, 2015, 16(02): 17-22.