|
|
The Application of Image Recognition in Mobile Solar Power Device Based on Light Intensity Detection in Shaded Area |
Ma Jian1, Yuan Jianhua1, Li Yunjian2, Qin Yuhong2 |
1.Electrical Engineering and Renewable Energy, Three Gorges University, Yichang, Hubei 443002; 2. College of Computer and Information Technology, Three Gorges University, Yichang, Hubei 443002 |
|
|
Abstract In the comparative analysis of shadow-free environment with shadow image characteristics, one for the shadow environment, looking for the strongest light through the camera and the weakest light area algorithm, to avoid the strength of the light area,tends to the region of the light intensity, thereby improving the efficiency of solar power generation. The results show that the method can quickly and accurately find nearby for the region with the strongest sunlight.
|
Published: 11 June 2014
|
|
|
|
Cite this article: |
Ma Jian,Yuan Jianhua,Li Yunjian等. The Application of Image Recognition in Mobile Solar Power Device Based on Light Intensity Detection in Shaded Area[J]. Electrical Engineering, 2014, 15(06): 93-95.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2014/V15/I06/93
|
[1] 周志敏,纪爱华. 太阳能光伏发电系统设计与应用实例[M].北京:电子工业出版社,2012:4-5. [2] 张笑微,王月琴. 基于灰度图像的阴影检测算法[J].网络与信息技术,2007,26(7):45-47. [3] 华希俊,廖茜,陈美云,王木菊.阴影环境下拖拉机视觉导航路径识别方法研究[J].农机化研究,2012,4(4): 181-184. [4] 王英,曾光宇.图像去噪算法研究电脑与信息技术[J]. 2011,19(4):8-12. [5] 张丽, 李志能. 基于阴影检测的HSV 空间自适应背景模型的车辆追踪检测[J]. 中国图像图形学报, 2003, 8 (7). [6] 王涛,王伟超,张刚. 正摄影下阴影区域的检测与消除方法[J].2010, 3(5),7. |
|
|
|