|
|
Actual measurement and analysis of wind power plant participating in power grid fast frequency regulation base on droop characteristic |
Wei Bo1, Shao Chong2, Zhang Bolin2, Tang Wen2, Shen Weicheng1 |
1. State Grid Gansu Electric Power Research Institute, Lanzhou 730070; 2. State Grid Gansu Electric Power Company, Lanzhou 730046 |
|
|
Abstract With the further growth of region wind power penetration rate, conventional generators are replaced by plenty of renewable energy generating, which results in continued decline of power grid rotational inertia. Consequently, the frequency characteristic of power grid is trending downward. So it is an urgent need to study implementation of renewable energy generating units to participate in grid frequency regulation. This paper proposed a policy setting of wind turbines participating in grid frequency regulation base on droop control method, and picked a wind power plant with a typical capacity which contains 133 double fed induction wind turbines. Combined with plant-side off-line validating test and frequency characteristics test of Northwest Power Grid in second half of 2016, the fast frequency response capability of the wind turbines was actually verified for the first time from the perspective of the entire wind farm. The result shows that the wind turbines can rapidly adjust the output tracking the power system frequency, and the improvement of the frequency characteristic is significant.
|
Received: 28 November 2019
|
|
|
|
Cite this article: |
Wei Bo,Shao Chong,Zhang Bolin等. Actual measurement and analysis of wind power plant participating in power grid fast frequency regulation base on droop characteristic[J]. Electrical Engineering, 2020, 21(6): 39-44.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2020/V21/I6/39
|
[1] 刘巨, 姚伟, 文劲宇, 等. 基于变减载率的光伏发电参与电网调频控制策略[J]. 电工技术学报, 2019, 34(5): 1013-1024. [2] 付媛, 王毅, 张祥宇, 等. 变速风电机组的惯性与一次调频特性分析及综合控制[J]. 中国电机工程学报, 2014(27): 4706-4716. [3] 孙骁强, 刘鑫, 程松, 等. 光伏逆变器参与西北送端大电网快速频率响应能力实测分析[J]. 电网技术, 2017, 41(9): 2792-2798. [4] 韩小琪, 宋璇坤, 李冰寒, 等. 风电出力变化对系统调频的影响[J]. 中国电力, 2010, 43(6): 26-29. [5] 李波, 李东. 永磁直驱风力发电机组调频策略的研究[J]. 电气技术, 2017, 18(9): 53-56. [6] 张燕平, 吴子豪, 师鹏, 等. 火电机组一次调频及试验[J]. 电气技术, 2018, 19(4): 116-119. [7] Ramtharan G, Ekanayake J, Jenkins N.Frequency support from doubly fed induction generator wind turbines[J]. IEEE Trans. on Renewable Power Gener-ation, 2007, 1(1): 3-9. [8] Manuel Mauricio J, Marano A, Gomez-Exposito A, et al.Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Transactions on Power Systems, 2009, 24(1): 173-180. [9] 李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, 32(7): 32-39. [10] 田新首, 王伟胜, 迟永宁, 等. 基于双馈风电机组有效储能的变参数虚拟惯量控制[J]. 电力系统自动化, 2015, 39(5): 20-26, 33. [11] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232. [12] De Alme ida rg, Pecas lopes J A. Participation of doubly fed induction wind generators in system frequency regulation[J]. IEEE Transactions on Power System, 2007, 22(3): 944-950. [13] 杨仁炘, 施刚, 蔡旭. 海上全直流型风电场的电压源型控制[J]. 电工技术学报, 2018, 33(增刊2): 546-557. [14] 李华, 陈志刚, 柴琦, 等. 基于频率信号的火电机组一次调频改造及优化[J]. 电气技术, 2019, 20(2): 101-104. [15] Ramtharan G, Ekanayake J, Jenkins N.Frequency support from doubly fed induction generator wind turbines[J]. IET Transactions on Renewable Power Generation, 2007, 1(1): 3-9. [16] 任冲, 孙骁强, 褚云龙. 西北电网一次调频评价指标研究[J]. 电网与清洁能源, 2011, 27(9): 36-40. [17] 徐子扬. 电网一次调频及参数辨识自动测试系统[D]. 西安: 西安理工大学, 2013. |
|
|
|