|
|
The definite and indefinite-solutions in the dissipative non-autonomous circuits |
HUANG Binghua, CHEN Xinmiao, WEI Shan'ge |
School of Electrical Engineering, Guangxi University, Nanning 530004 |
|
|
Abstract The harmonic balance principle can only seek the stable oscillation solution of non-linear dynamic system, but it cannot solve the initial transient process. Since the initial condition is not introduced, the initial phase angle of the self-excited oscillation component cannot be obtained. Concerning harmonic analysis method, if the initial assumption of the harmonic components fits the physical characteristics of the circuit, the correct real number solution will be obtained. By contrast, the absence of real number solution implies an improper initial assumption. In this case, to reset the form of harmonic components is necessary. Containing both self-excited and forced oscillation components, the second order non-autonomous circuit is a coupled oscillation. The non-autonomous circuits of fifth power are discussed in this paper. The non-linear damping factor can be replaced by equivalent first wave conduction. The simplification network can be divided into two subsections, each of which possess independent oscillation frequency. The differential equation can independently be described and then be solved together. The power balance of each subsection network must be maintained. It is an effective way to solve non-autonomous circuits. It possesses widely universality and applicability.
|
Received: 29 December 2021
|
|
|
|
Cite this article: |
HUANG Binghua,CHEN Xinmiao,WEI Shan'ge. The definite and indefinite-solutions in the dissipative non-autonomous circuits[J]. Electrical Engineering, 2022, 23(9): 54-68.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I9/54
|
[1] 黄炳华, 钮利荣, 蔺兰峰, 等. 功率平衡基础上的基波分析法[J]. 电子学报, 2007, 35(10): 1994-1998. [2] 黄炳华, 黄新民, 韦善革. 用基波平衡原理分析非线性振荡与混沌[J]. 通信学报, 2008, 29(1): 65-70. [3] 黄炳华, 黄新民, 李世作. 功率平衡与基波分析法[J]. 电路与系统学报, 2003, 8(1): 72-76. [4] 黄炳华, 黄新民, 张驰. 电子网络振荡与稳定的基波分析法[J]. 电子科技大学学报, 2006, 35(1): 47-50. [5] 黄炳华, 宋春宁, 黄洪全. 非线性电子网络的基波分析法[J]. 固体电子学研究与进展, 2003, 23(1): 35-41. [6] 黄炳华, 黄新民, 张海明, 等. 各类自激振荡的基波分析法[J]. 固体电子学研究与进展, 2005, 25(1): 102-107. [7] 黄炳华, 黄新民, 王庆华. 用基波平衡原理分析非线性电子网络的稳定性[J]. 固体电子学研究与进展, 2006, 26(1): 43-48. [8] 肖达川. 线性与非线性电路[M]. 修订版. 北京: 科学出版社, 1992. [9] 褚亦清, 李翠英. 非线性振动分析[M]. 北京: 北京理工大学出版社, 1996. [10] 高金峰. 非线性电路与混沌[M]. 北京: 科学出版社, 2005. [11] MICKENS R E.Comments on the method of harmonic balance[J]. Journal of Sound Vibration, 1984, 94(3): 456-460. [12] HUANG Binghua, YANG Guangsong, WEI Yafen, et al. Harmonic analysis method based on power balance[J]. Applied Mechanics and Materials, 2013, 325-326: 1508-1514. [13] HUANG Binghua, LI Guangming, LIN Huijie.Power balance theorem of frequency domain and its appli-cation[J]. Journal of Modern Physics, 2014, 5(12): 1097-1108. [14] 王庆华, 黄炳华. 混频振荡与功率平衡的研究[J]. 现代电子技术, 2018, 41(21): 173-178. [15] HUANG Binghua, HUANG Xinmin, LI Hui.Main components of harmonic solutions of nonlinear oscillations[J]. Procedia Engineering, 2011, 16: 325-332. [16] 黄炳华, 周珊, 林晓东. 非自治振荡电路的功率平衡[J]. 固体电子学研究与进展, 2018, 38(5): 333-342. [17] 黄炳华, 黄昌琴, 蔡义明. 非自治振荡电路的主谐波分析法[J]. 电子学报, 2019, 47(9): 2003-2011. [18] 黄炳华, 周珊. 非线性解的多种成份及其特征[J]. 固体电子学研究与进展, 2019, 39(6): 436-443. [19] 黄炳华, 周珊, 黄昌琴. 用相图描写混频电路[J]. 固体电子学研究与进展, 2019, 39(5): 364-370. [20] 严静, 邵振国. 电能质量谐波监测与评估综述[J]. 电气技术, 2020, 21(7): 1-7. [21] 陈和洋, 吴文宣, 郑文迪, 等. 电力系统谐波检测方法综述[J]. 电气技术, 2019, 20(9): 1-6. [22] 孙佳伟. 一种谐波自消除整流器的特性研究[J]. 电气技术, 2020, 21(3): 52-58. [23] 孟繁庆, 易新强, 刘海涛, 等. 三次谐波注入下多相感应电机稳态性能分析[J]. 电工技术学报, 2020, 35(16): 3396-3405. [24] 阚超豪, 鲍习昌, 金科, 等. 绕线转子无刷双馈电机多谐波联合起动过程中磁动势及性能分析[J]. 电工技术学报, 2020, 35(3): 481-493. |
|
|
|