|
|
Multi-parameter tuning of servo system based on improved particle swarm optimization |
Tian Feng, Lin Rongwen, Wu Di |
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract With the wider application of AC servo system in manufacturing industry, higher performance requirements have been put forward for servo system. Considering that the basic particle swarm optimization algorithm is easy to fall into local optimum and the traditional manual tuning method of servo system control parameters is time-consuming, laborious and poor performance, this paper chooses integrated time absolute error as the performance index, and uses the improved particle swarm optimization algorithm to tune and calculate multiple control parameters of servo system. The optimization of speed response time and speed error is taken as the goal of setting calculation, and the simulation analysis is carried out with the vector control system of AC servo system. The simulation results show that the global search ability of the improved algorithm is strong, and the optimal setting value of multi-parameters of the servo system can be obtained. The servo system can also have good dynamic and steady-state performance.
|
Received: 23 January 2019
Published: 12 September 2019
|
|
|
|
Cite this article: |
Tian Feng,Lin Rongwen,Wu Di. Multi-parameter tuning of servo system based on improved particle swarm optimization[J]. Electrical Engineering, 2019, 20(9): 26-30.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2019/V20/I9/26
|
[1] 于乐华. 永磁同步电机伺服系统控制器参数自整定技术的研究[D]. 济南: 山东大学, 2012. [2] 唐任远. 现代永磁电机理论与设计[M]. 北京: 机械工业出版社, 1997. [3] 陈坚. 交流电机数学模型及调速系统[M]. 北京: 国防工业出版社, 1989. [4] 陈修亮, 车倍凯. 永磁同步电机矢量控制解耦方法的研究[J]. 电气技术, 2013, 14(4): 37-40, 43. [5] 李献, 骆志伟. 精通Matlab/Simulink系统仿真[M]. 北京: 清华大学出版社, 2015. [6] 代兵琪, 王哲, 李春生. 基于改进粒子群算法的风储联合系统多目标协同调度[J]. 电气技术, 2015, 16(12): 22-25. [7] 徐卫星. 基于改进粒子群算法的分布式电源优化配置[J]. 电气技术, 2015, 16(12): 71-75. [8] 邱丽, 曾贵娥, 朱学峰, 等. 几种PID控制器参数整定方法的比较研究[J]. 自动化技术与应用, 2005, 24(11): 28-31. [9] 耿洁, 陈振, 刘向东, 等. 永磁同步电机的自适应逆控制[J]. 电工技术学报, 2011, 26(6): 51-55, 61. [10] 丁文双. 永磁同步电机PI参数自整定[D]. 南京: 南京航空航天大学, 2012. [11] 刘金琨. 智能控制[M]. 4版. 北京: 电子工业出版社, 2017. [12] 郁磊, 史峰, 王辉, 等. Matlab智能算法30个案例分析[M]. 2版. 北京: 北京航空航天大学出版社, 2015. [13] 曹雪景. 基于遗传粒子群算法的永磁同步电机多目标优化设计[D]. 合肥: 安徽大学, 2017. |
|
|
|