|
|
Heat transfer analysis of permanent magnet direct drive wind generator based on fluid-solid coupling |
XING Junqiang, WANG Mingwu, KONG Yingying |
Shenyang Institute of Engineering, Shenyang 110000 |
|
|
Abstract Offshore wind power is regarded as an important part of the future large-scale renewable power generation portfolio, and offshore wind power is the main development direction of the future wind power industry. The high power generator has a high requirement on the unit heat dissipation, so the temperature field analysis of the generator can be a good guide for the design of the generator cooling system. Compared with the natural air-cooled generator, the forced water-cooled generator has the advantages of better heat dissipation, less noise and longer service life. In this paper, an external rotor permanent magnet direct drive wind generator is taken as the research object. Based on the analysis method of fluid-solid coupling and conjugate heat transfer, the temperature field of thegenerator under normal operation is analyzed by using ANSYS software, so as to obtain the temperature distribution of the main components in the generator. Finally, through the fluid structure coupling analysis of a 10MW external rotor generator, the temperature rise distribution of generator under different cooling water flow rates is compared and calculated, and the relationship curve between cooling fluid flow rate and generator temperature rise is obtained, which provides reference for generator cooling design.
|
Received: 18 June 2020
|
|
|
|
Cite this article: |
XING Junqiang,WANG Mingwu,KONG Yingying. Heat transfer analysis of permanent magnet direct drive wind generator based on fluid-solid coupling[J]. Electrical Engineering, 2021, 22(1): 47-52.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I1/47
|
[1] 王凤翔. 高速电机的设计特点及相关技术研究[J]. 沈阳工业大学学报, 2006, 28(3): 258-264. [2] BAO Xiaohua, LIU Jiwei, SUN Yue, et al.Review and prospect of low-speed high-torque permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. [3] 李晓宇, 王伟. 基于SWOT分析我国海上风力发电的发展现状[J]. 华北电力大学学报(社会科学版), 2018(5): 42-49. [4] 余莉, 胡虔生, 易龙芳, 等. 高速永磁无刷直流电机铁耗的分析和计算[J]. 电机与控制应用, 2007, 34(4): 10-14, 32. [5] 王小飞, 代颖, 罗建. 基于流固耦合首尾车用永磁同步电机水道设计与温度场分析[J]. 电工技术学报, 2019, 34(1): 22-29. [6] 吴柏禧, 万珍平. 考虑温度场和流场的永磁同步电机折返型冷却水道设计[J]. 电工技术学报, 2019, 34(11): 2306-2314. [7] 王晓东. 管壳式换热器传热的模拟研究及其优化分析[D]. 沈阳: 东北大学, 2012. [8] 徐小韵, 郑源, 赵振宙, 等. 基于计算流体动力学的S型风力机性能分析[J]. 河海大学学报(自然科学版), 2010, 38(3): 332-336. [9] 梁安江, 张海燕, 柳毅, 等. 高压同步电机变频调速技术及应用[J]. 电机与控制应用, 2010, 37(5): 42-45. [10] 周喆, 吴俊, 杨俊翔, 等. 异步电动机无速度传感器矢量控制研究[J]. 电气技术, 2016, 17(12): 41-44. [11] 林传霖, 林珍. 永磁电动机结构参数对齿槽转矩的影响综述[J]. 电气技术, 2018, 19(2): 6-10, 15. [12] 刘蕾, 刘光复, 刘马林, 等. 车用永磁同步电机三维温度场分析[J]. 中国机械工程, 2015, 26(11): 1438-1443, 1444. |
|
|
|