|
|
Simulation analysis of 35kV cable joint with air gap defect based on electrothermal field coupling |
CHEN Yin1, HUANG Ruimei2 |
1. State Grid Xiamen Power Supply Company, Xiamen, Fujian 361000; 2. Fujian College of Water Conservancy and Electric Power, Yongan, Fujian 366000 |
|
|
Abstract In order to study the performance of cable joints with different sizes of air wedge gaps, the refined model of 35kV cable joint is designed to calculate the electric field and temperature distribution of cable joint under single-phase earthing fault by the finite element method. The results show that the electric field in air gap of cable joint is concentrated which leads to the deterioration of insulation layer. As the length of air gap increases, the maximum electric field in air gap gradually increases. As the depth of the air gap increases, the maximum electric field in air gap decreases at first and then increases. Also, it shows that the accumulation of heat in the air gap will cause the deterioration of insulation. At last, according to actual defect cases, risk pre-control and prevention measures are proposed.
|
Received: 17 February 2021
|
|
|
|
Cite this article: |
CHEN Yin,HUANG Ruimei. Simulation analysis of 35kV cable joint with air gap defect based on electrothermal field coupling[J]. Electrical Engineering, 2021, 22(10): 46-50.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2021/V22/I10/46
|
[1] 曹晓珑, 刘英, 钟力生, 等. 从2010国际大电网会议看电力电缆技术的发展现状和趋势[J]. 高电压技术, 2011, 37(12): 3078-3083. [2] 于景丰. 电力电缆实用技术[M]. 北京: 中国水利水电出版社, 2003. [3] 王春江. 电线电缆手册[M]. 2版. 北京: 机械工业出版社, 2001. [4] 林晨炯, 林珍, 吴雅琳. 电缆接头温度在线监测方法研究综述[J]. 电气技术, 2019, 20(5): 1-4. [5] 马自伟, 贾江波, 查玮, 等. 10kV XLPE电缆终端电场分布与调整[J]. 高压电器, 2007, 43(4): 304-307. [6] 罗俊华, 邱毓昌, 杨黎明. 10kV及以上电力电缆运行故障统计分析[J]. 高电压技术, 2003, 29(6): 14-16. [7] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. [8] FABIANI D, MONTANARI G C, LAURENT C, et al.HVDC cable design and space charge accumulation. Part 3: effect of temperature gradient[J]. IEEE Electrical Insulation Magazine, 2008, 24(2): 5-14. [9] 王超, 刘毅刚, 刘刚, 等. 有限元法应用于电缆终端应力锥缺陷分析[J]. 高电压技术, 2007, 33(5): 152-155. [10] 刘飞. 35kV及以下XLPE电力电缆绝缘老化评估研究[D]. 上海: 上海交通大学, 2014. [11] 张龙, 张伟, 李锐鹏, 等. 10kV XLPE电缆终端缺陷仿真与电场分析[J]. 绝缘材料, 2014, 47(4): 83-88. [12] 杨帆, 杨旗, 程鹏, 等. 电缆接头内部气隙放电缺陷下的绝缘劣化程度表征方法[J]. 电工技术学报, 2017, 32(2): 24-32. [13] 刘刚, 陈志娟, 陆国俊, 等. 110kV交联聚乙烯电缆终端主绝缘含杂质的击穿特性分析[J]. 高电压技术, 2010, 36(10): 2450-2453. [14] 赵柏山, 王庆祝. 高压电缆实时导体温度计算与载流量预测探究[J]. 电气技术, 2017, 18(3): 10-15. [15] 徐元哲, 王乐天, 高洪学, 等. 电力电缆接头温度场分布的理论研究[J]. 电力系统保护与控制, 2008, 36(24): 4-13. [16] 唐科, 文武, 丁俊杰, 等. 基于有限元法的电缆接头温度场仿真[J]. 电力建设, 2016, 37(2): 145-150. [17] 王伟. 交联聚乙烯(XLPE)绝缘电力电缆技术基础[M]. 西安: 西北工业大学出版社, 2011. [18] 张洪麟, 唐军, 陈伟根, 等. 基于有限元法的地下电缆群温度场及载流量的仿真计算[J]. 高压电器, 2010, 46(2): 42-51. [19] 王有元, 陈仁刚, 陈伟根, 等. 有限元法计算地下电缆稳态温度场及其影响因素[J]. 高电压技术, 2009, 35(2): 3086-3092. [20] REDDY C C, RAMU T S.On the computation of electric field and temperature distribution in HVDC cable insulation[J]. IEEE Transactions on Dielectrics and Insulation, 2006, 13(6): 1236-1244. |
|
|
|