|
|
Feedforward neural network based on improved particle swarm optimization algorithm for identification of user electricity stealing behavior |
LI Qiuhong |
Shandong Agriculture and Engineering University, Ji’nan 250100 |
|
|
Abstract In order to reduce the negative impact of electricity theft on power grid operation, improve the ability of electricity theft inspection and the accuracy of identifying electricity theft users, a feedforward neural network model based on improved particle swarm optimization algorithm (BFO-PSO) is proposed. Based on the electricity consumption data of a city in recent four years, through feature extraction, four features that have a greater impact on electricity stealing behavior are obtained as input samples. A feedforward neural network recognition model based on BFO-PSO algorithm is constructed, and the optimal weight value of BP neural network model are calculated by using algorithm BFO-PSO. By comparing the recognition results of BP neural network model, the genetic algorithm based BP neural network model and the BFO-PSO based BP neural network model, it is found that the BP network model based on BFO-PSO can better identify the power stealing users. The recognition accuracy is as high as 94%, and the training speed is increased by 5%. It is expected to be widely used in the power stealing user recognition.
|
Received: 04 July 2022
|
|
|
|
Cite this article: |
LI Qiuhong. Feedforward neural network based on improved particle swarm optimization algorithm for identification of user electricity stealing behavior[J]. Electrical Engineering, 2022, 23(11): 44-48.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2022/V23/I11/44
|
[1] 张宇帆, 艾芊, 李昭昱, 等. 基于特征提取的面向边缘数据中心的窃电监测[J]. 电力系统自动化, 2020, 44(9): 128-134. [2] 雷怡琴, 孙兆龙, 叶志浩, 等. 电力系统负荷非侵入式监测方法研究[J]. 电工技术学报, 2021, 36(11): 2288-2297. [3] 唐冬来, 刘友波, 熊智临, 等. 基于时空关联矩阵的配电台区反窃电预警方法[J]. 电力系统自动化, 2020, 44(19): 168-176. [4] 宋少杰, 张长胜, 李英娜, 等. 基于曲线相似度和集成学习的窃电识别[J]. 数据通信, 2022(3): 39-44. [5] 刘康, 李彬, 薛阳, 等. 基于传递熵密度聚类的用户窃电识别方法[J/OL]. 中国电机工程学报, 2022, https://kns.cnki.net/kcms/detail/11.2107.TM.20211203.0323.003.html. [6] 金晟, 苏盛, 曹一家, 等. 基于格兰杰归因分析的高损台区窃电检测[J]. 电力系统自动化, 2020, 44(23): 78-86. [7] 杨萍, 孙延明, 刘小龙, 等. 基于细菌觅食趋化算子的PSO算法[J]. 计算机应用研究, 2011, 28(10): 3640-3642. [8] 徐扬, 张紫涛. 基于遗传模拟退火算法改进BP神经网络的中长期电力负荷预测[J]. 电气技术, 2021, 22(9): 70-76. [9] 闻枫, 荆凡胜, 李强, 等. 基于改进BP神经网络的无线电能传输系统接收线圈参数优化[J]. 电工技术学报, 2021, 36(增刊2): 412-422. [10] 杨尚君, 王社伟, 陶军, 等. 基于混合细菌觅食算法的多目标优化方法[J]. 计算机仿真, 2012, 29(6): 218-222. [11] 李涛, 方文田. 基于粒子群优化算法的金属氧化物避雷器阻性电流计算方法研究[J]. 电气技术, 2021, 22(11): 104-108. [12] 赵莉, 孙娜, 李丽萍, 等. 拉格朗日插值法在数据清洗中的应用[J]. 辽宁工业大学学报(自然科学版), 2022, 42(2): 102-105, 117. [13] 巢政, 温蜜. 一种基于SMOTE和XGBoost的窃电检测方案[J]. 智慧电力, 2020, 48(11): 97-102. |
|
|
|