|
|
Key technologies for energy conservation and environmental protection of non-metallic modular prefabricated cabin substations |
ZUO Tao1,5, LIU Jiantao2, JIANG Qiang3,5, ZHU Xiping4,5 |
1. Leshan ELECT Electrified Wire Netting Automation Co., Ltd, Leshan, Sichuan 614000; 2. Southwest Jiaotong University, Chengdu 611756; 3. Leshan Normal University, Leshan, Sichuan 614000; 4. Southwest Petroleum University, Chengdu 610500; 5. Sichuan Prefabricated Cabin Power Equipment Engineering Technology Research Center, Leshan, Sichuan 614000 |
|
|
Abstract With the continuous deepening and implementation of China’s carbon peaking and carbon neutrality goals, the requirements for green, low-carbon, energy-saving and environmental protection of substation construction are getting higher and higher. In this paper, the Longkou 110kV non-metallic modular prefabricated cabin substation completed and put into operation in Leshan City, Sichuan Province is taken as the research object, and the key energy-saving and environmental protection technologies involved in the design, production and application of non-metallic prefabricated cabin substation such as high-performance fiber prefabricated cabin technology, prefabricated cabin green modular design technology, prefabricated cabin building energy-saving technology, prefabricated cabin sound barrier noise reduction technology, and electromagnetic radiation control technology of prefabricated cabin substation are deeply analyzed and discussed, which provides key technical support for the application and promotion of this kind of power equipment.
|
Received: 22 January 2024
|
|
|
|
Cite this article: |
ZUO Tao,LIU Jiantao,JIANG Qiang等. Key technologies for energy conservation and environmental protection of non-metallic modular prefabricated cabin substations[J]. Electrical Engineering, 2024, 25(4): 59-65.
|
|
|
|
URL: |
http://dqjs.cesmedia.cn/EN/Y2024/V25/I4/59
|
[1] 汪洋. 预制舱技术在智能化变电站的应用[J]. 中国电力企业管理, 2017(24): 80-81. [2] 李涛祥. 模块化预制舱变电站在莱芜牛泉光伏电站应用分析[J]. 中国科技纵横, 2018(2): 143-144. [3] 邹平丽. 传统土建新能源变电站与模块化预制舱变电站对比分析[J]. 机电信息, 2020(15): 38-39. [4] 于燕萍. 澳洲标准下E-house电气设计经验点滴[J]. 电气技术, 2015, 16(2): 109-114. [5] 张王田. 预制舱房用玻璃纤维增强混凝土配合比设计及其性能研究[D]. 南京: 东南大学, 2019. [6] 张杰, 黄满华. 预制舱式变电站的防腐蚀技术研究[J]. 电工技术, 2019(7): 117-118, 121. [7] 由恒远, 屈东明, 孙福鹏. 模块化预制仓式变电站在110kV配网中的应用[J]. 电气技术, 2016, 17(5): 105-108. [8] 周文, 李杰. 配送式预制舱智能变电站技术[J]. 电气技术, 2014, 15(4): 88-91. [9] 郭红斌, 马驰, 文正其. 预制舱式模块化变电站关键技术及展望[J]. 电气技术, 2023, 24(9): 1-10, 19. [10] 左涛, 李敏, 朱西平, 等. 110kV全模块化高性能纤维预制舱式变电站消防研究[J]. 电气时代, 2023(9): 53-58. [11] 许成昊. 110kV标准配送式变电站的设计与发展[J]. 电工技术, 2020(19): 58-60. [12] 左涛, 张新太. 智能变电站高性能纤维预制舱防凝露设计[J]. 宁夏电力, 2022(2): 24-30. [13] 220kV及以下智能变电站用玄武岩纤维预制舱生产技术规范: DB51/T3079—2023[S]. [14] 左涛, 李敏, 宋英杰, 等. 变电站预制舱围护结构建设能耗与碳排放计算及分析[C]//2023输变电年会论文集, 江西, 萍乡, 2023: 323-328. [15] 刘丽, 张楠, 张嵩, 等. 智能变电站预制式二次设备布置及优化建议[J]. 电气技术, 2017, 18(6): 111-115. [16] 杨丽薇, 王立丹, 支沛. 110kV预装式变电站在新能源电网中的应用与分析[J]. 工程建设与设计, 2018(23): 87-89. [17] 工业建筑节能设计统一标准: GB 51245—2017[S]. 北京: 中国计划出版社, 2017. [18] 张军. 预制舱类工业建筑节能技术研究: 以智能变电站预制舱为例[D]. 广州: 华南理工大学, 2019. [19] 陆朝阳, 李雪城, 刘广州, 等. 智能变电站预制舱防凝露技术研究[J]. 电气技术, 2020, 21(11): 66-70. [20] 冯仁祥, 毛文利, 冯政宁. 大型运行变电站噪声治理研究[J]. 浙江建筑, 2021, 38(2): 56-58. [21] 孟晓明, 陈胜男, 杨黎波, 等. 城市户外变电站噪声治理研究[J]. 电力科技与环保, 2019, 35(3): 1-3. [22] 刘辉, 尹建光, 张国英, 等. 110kV户外变电站噪声污染分析与治理方案[J]. 广东电力, 2018, 31(12): 12-19. [23] 张敬雯, 吴静, 谢天宇. 近地空间与电网相关的谐波辐射现象研究[J]. 电工技术学报, 2023, 38(11): 2861-2869. [24] 陈豪, 刘其凤, 李永明, 等. 一种强电磁设备低频辐射特性等效建模方法[J]. 电工技术学报, 2023, 38(20): 5354-5368. [25] 刘润泉. 110kV变电站电磁辐射环境影响分析及措施[J]. 海峡科学, 2018(3): 27-29. [26] 陈宝才, 吴慧体, 许明发. 城区中全户内变电站电磁辐射环境影响分析研究[J]. 环境科学与管理, 2014, 39(2): 182-185. [27] 严有祥, 朱婷, 张那明, 等. 交直流电缆共沟敷设电磁环境影响因素[J]. 电工技术学报, 2022, 37(6): 1329-1337. |
|
|
|