电气技术  2015, Vol. 16 Issue (8): 29-33    DOI:
研究与开发 |
基于压缩感知的一类带噪声电气系统的故障诊断
叶北林1, 梁凯豪2, 熊平原3
1. 从化市职业技术学校,广州 510920;
2. 仲恺农业工程学院计算科学学院,广州 510225;
3. 仲恺农业工程学院机电学院,广州 510225
Fault Diagnosis for a Type of Electrical System with Noise Via Compressed Sensing
Ye Beilin1, Liang Kaihao2, Xiong Pingyuan3
1. Polytechnic School of Conghua, Guangzhou 510920;
2. Department of Mathematics, Zhongkai University of Agri. & Engi.,Guangzhou 510225;
3. Faculty of Mechanical & Electrical Engineering, Zhongkai University of Agri. & Engi.,Guangzhou 510225
全文: PDF (3847 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对带噪声干扰的情况下电气系统的故障诊断问题,提出了一种基于压缩感知的故障诊断方法,将故障诊断看作从故障信息集到故障类型集的一种映射关系,建立故障诊断的l0范数最小化模型,并将l0范数最小化问题转化为l1范数最小化问题。求解模型时,首先构建满足高斯分布的测量矩阵,然后用迭代重加权最小平方(IRLS)算法对l1范数最小化问题进行求解,恢复出稀疏故障信号,根据故障信号判断故障类型。该方法只需要经过3次迭代则能够将故障信号准确恢复出来;而且,经过3次迭代后恢复出来的故障信号和设定的故障信号两者之间的误差稳定在1%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶北林
梁凯豪
熊平原
关键词 电气系统噪声故障诊断压缩感知IRLS算法    
Abstract:To tackle the problem of fault diagnosis in electrical systems with noise, a diagnosis method based on compressed sensing was proposed, which regarded fault diagnosis as a mapping from fault message set to fault types. According to such principle, a l0 norm minimization model for fault diagnosis was established, and it was transformed to l1 norm minimization. To solve the model, constructed a measurement matrix satisfying Gaussian distribution firstly, and then solved l1 norm minimization problem using IRLS algorithm to recover sparse fault signal, and finally decided fault types according to fault signal. Fault signal is exactly recovered after 3 iterations in this method; moreover, the error between setting and recovered signal is stably converged at 1%.
Key wordselectrical system    noise    fault diagnosis    compressed sensing    IRLS algorithm   
收稿日期: 2015-08-18      出版日期: 2015-08-18
作者简介: 叶北林(1959-),男,广东省广州市人,本科,讲师,主要从事电气系统和机械系统故障分析研究。
引用本文:   
叶北林, 梁凯豪, 熊平原. 基于压缩感知的一类带噪声电气系统的故障诊断[J]. 电气技术, 2015, 16(8): 29-33. Ye Beilin, Liang Kaihao, Xiong Pingyuan. Fault Diagnosis for a Type of Electrical System with Noise Via Compressed Sensing. Electrical Engineering, 2015, 16(8): 29-33.
链接本文:  
https://dqjs.cesmedia.cn/CN/Y2015/V16/I8/29