|
|
Power deficit prediction method for power system after frequency disturbance |
Wen Xinglu1, Chen Zhen'an1, Lu Hengguang1, He Peican2 |
1. Huadian Wan'an Energy Limited Company, Longyan, Fujian 364000; 2. School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108 |
|
|
Abstract Power system frequency disturbance will bring a certain power shortage. The power deficit plays an important guiding and reference role in frequency safety and stability control. Based on the physical calculation method of adaptive power deficit, the power deficit prediction method of power system after frequency disturbance is proposed by using the neural network algorithm of long-short term memory. Through the simulation test of ieee-39 node extended system, it can be seen that the prediction effect of this scheme is accurate, and it is obviously improved compared with the traditional neural network algorithm.
|
Received: 03 January 2020
|
|
|
|
Cite this article: |
Wen Xinglu,Chen Zhen'an,Lu Hengguang等. Power deficit prediction method for power system after frequency disturbance[J]. Electrical Engineering, 2020, 21(7): 20-23.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2020/V21/I7/20
|
[1] 孙华东, 汤涌, 马世英. 电力系统稳定的定义与分类述评[J]. 电网技术, 2006, 30(17): 31-35. [2] 张恒旭, 李常刚, 刘玉田, 等. 电力系统动态频率分析与应用研究综述[J]. 电工技术学报, 2010, 25(11): 169-176. [3] 杨宝起. 地区电网孤网运行安稳策略分析[J]. 电气技术, 2013, 14(6): 93-97. [4] 陈俊山, 洪兰秀, 郑志远. 电力系统低频减载研究与应用发展[J]. 继电器, 2007, 35(14): 79-82. [5] 赵强, 刘肇旭, 张丽. 对中国低频减载方案制定中若干问题的探讨[J]. 电力系统自动化, 2010, 34(11): 48-53. [6] 许树楷, 谢小荣, 辛耀中. 基于同步相量测量技术的广域测量系统应用现状及发展前景[J]. 电网技术, 2005(2): 44-49. [7] 常乃超, 兰洲, 甘德强, 等. 广域测量系统在电力系统分析及控制中的应用综述[J]. 电网技术, 2005(10): 46-52. [8] 杨德友, 蔡国伟. 基于广域局部量测信息的复杂电力系统自适应低频保护策略研究[J]. 电工技术学报, 2014, 29(10): 266-275. [9] 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合(一)大数据与电力大数据[J]. 电力系统自动化, 2016, 40(1): 1-8. [10] 费思源. 大数据技术在配电网中的应用综述[J]. 中国电机工程学报, 2018, 38(1): 85-96, 345. [11] 周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望[J]. 电力系统自动化, 2019, 43(4): 180-191. [12] 刘威, 张东霞, 王新迎, 等. 基于深度强化学习的电网紧急控制策略研究[J]. 中国电机工程学报, 2018, 38(1): 109-119, 347. [13] 王怀远, 何培灿, 江岳文, 等. 基于估测惯量计算的低频减载方法[J]. 电力自动化设备, 2019, 39(7): 51-56, 63. [14] 王怀远, 何培灿, 温步瀛. 基于响应信息的分散式低频减载方案[J]. 电网技术, 2019, 43(8): 2976-2982. [15] Hochreiter S, Schmidhuber J.Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
|
|
|