|
|
An enhanced multi-objective differential evolution algorithm for security constrained dynamic environmental/economic dispatch |
Liao Zongyi, Wan Wenlue |
School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing 401300 |
|
|
Abstract An enhanced multi-objective differential evolution algorithm (E-MODE) is proposed to solve the dynamic environmental/economic dispatch considering the transmission line power flow constraints. Initialization of population using opposition based learning is introduced to enhance the diversity, and an improved crowding distance calculation method is used to enhance the global convergence of algorithm. Lastly, the compromise dispatch scheme is selected according to the power flow entropy index. The proposed generation dispatch approach is tested on IEEE 30-bus system, the results demonstrate the effectiveness of the proposed generation dispatching method.
|
Received: 16 March 2020
|
|
|
|
Cite this article: |
Liao Zongyi,Wan Wenlue. An enhanced multi-objective differential evolution algorithm for security constrained dynamic environmental/economic dispatch[J]. Electrical Engineering, 2020, 21(8): 22-27.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2020/V21/I8/22
|
[1] 董晓宁, 杨国华, 王岳, 等. 基于碳交易的含风光发电的电力系统低碳经济调度[J]. 电气传动自动化, 2018, 40(1): 13-16, 20. [2] 邱威, 张建华, 刘念. 自适应多目标差分进化算法在计及电压稳定性的无功优化中的应用[J]. 电网技术, 2011,35(8): 81-87. [3] Abimbola M J, Komolafe O A, Kehinde O A.Solving multi-objective economic dispatch problem via semidefinite programming[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2056-2064. [4] 陈功贵, 陈金富, 段献忠. 考虑备用约束和阀点效应的电力系统环境经济优化调度[J]. 电力自动化设备, 2009, 29(8): 18-22. [5] 朱志键, 王杰. 基于改进NSGA-Ⅱ的电力系统动态环境经济调度[J]. 电力自动化设备, 2017, 37(2): 176-183. [6] 张子泳, 仉梦林, 李莎. 基于多目标粒子群算法的电力系统环境经济调度研究[J]. 电力系统保护与控制, 2017, 45(10): 1-10. [7] 李晨, 胡志坚, 仉梦林, 等. 电力系统动态环境经济调度问题的建模与求解[J]. 电力系统及其自动化学报, 2017, 29(7): 53-60. [8] 朱永胜, 王杰, 瞿博阳, 等. 含风电场的多目标动态环境经济调度[J]. 电网技术, 2015, 39(5): 1315-1322. [9] Robič T, Filipič B.DEMO: Differential evolution for multiobjective optimization[C]//3rd International Con- ference on Evolutionary Multi-Criterion Optimization (EMO). Heidelberg, Germany: Springer, 2005: 520-533. [10] Deb K, Pratap A, Agarwal S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. Com- putation, IEEE Transactions on Evolutionary, 2002, 6(2): 182-197. [11] Rahnamayan S, Tizhoosh H R, Salama M A.Opposition- based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79. [12] 刘刚, 彭春华, 相龙阳. 采用改进型多目标粒子群算法的电力系统环境经济调度[J]. 电网技术, 2011, 35(7): 139-144. [13] 曹一家, 王光增, 曹丽华, 等. 基于潮流嫡的复杂电网自组织临界态判断模型[J]. 电力系统自动化, 2011, 35(7): 1-6. [14] Abou E A, Abido M A, Spea S R.Differential evolution algorithm for optimal reactive power dispatch[J]. Electric Power Systems Research, 2011, 81(2): 458-464. |
|
|
|