|
|
A review on the application of supercapacitors in grid frequency regulation based on material innovation and hybrid system optimization |
LIU Ruoting1, WU Pengyue2, YANG Endong3, LI Haiping4, LOU Yongbing1 |
1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189; 2. Xi'an Thermal Power Research Institute Co., Ltd, Xi'an 710001; 3. Nantong Jianghai Energy Storage Technology Co., Ltd, Nantong, Jiangsu 226321; 4. Huaneng Zuoquan Coal and Electricity Co., Ltd, Jinzhong, Shanxi 032600 |
|
|
Abstract With the grid connection of renewable energy systems (RES) with intermittency and volatility, the new energy storage technology of supercapacitors (SCs), which has a fast response speed and flexible regulation, has received extensive attention in the field of frequency regulation. In this paper, the potential of SCs for different frequency regulation scenarios in terms of operating principles, performance characteristics, efficiency analysis, and economic evaluation is firstly introduced. Furthermore, the research progress of SCs in the field of grid frequency regulation is systematically illustrated by two dimensions: the optimization of hybrid systems and innovations in electrode and electrolyte materials and structure-activity relationships. It indicates that new energy storage technologies adapted to a high proportion of RES access face the central challenge of balancing millisecond-level dynamic power response and long-term operational stability. Ultimately, prospects are proposed from three aspects: material innovation, hybrid energy storage, and joint artificial intelligence (AI) dispatching technology.
|
Received: 24 April 2025
|
|
|
|
Cite this article: |
LIU Ruoting,WU Pengyue,YANG Endong等. A review on the application of supercapacitors in grid frequency regulation based on material innovation and hybrid system optimization[J]. Electrical Engineering, 2025, 26(9): 1-12.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2025/V26/I9/1
|
[1] RAZA M Q, NADARAJAH M, EKANAYAKE C.On recent advances in PV output power forecast[J]. Solar Energy, 2016, 136: 125-144. [2] ZHANG Ning, YANG N C, LIU Jianhong.Optimal sizing of PV/wind/battery hybrid microgrids con- sidering lifetime of battery banks[J]. Energies, 2021, 14(20): 6655-6668. [3] 王守相, 尹孜阳, 赵倩宇. 考虑多供电层级耦合的中低压配电网分布式光伏承载力一体化精细评估方法[J]. 电工技术学报, 2025, 40(6): 1930-1944. [4] 李鹏, 钟瀚明, 马红伟, 等. 基于深度强化学习的有源配电网多时间尺度源荷储协同优化调控[J]. 电工技术学报, 2025, 40(5): 1487-1502. [5] 张波, 高远, 李铁成, 等. 计及IGBT结温约束的光伏高渗透配电网无功电压优化控制策略[J]. 电工技术学报, 2024, 39(5): 1313-1326. [6] AKRAM U, NADARAJAH M, SHAH R, et al.A review on rapid responsive energy storage techno- logies for frequency regulation in modern power systems[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109626. [7] CARRASCO J M, FRANQUELO L G, BIALASIEWICZ J T, et al.Power-electronic systems for the grid integration of renewable energy sources: a survey[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1002-1016. [8] DOHERTY R, MULLANE A, NOLAN G, et al.An assessment of the impact of wind generation on system frequency control[J]. IEEE Transactions on Power Systems, 2010, 25(1): 452-460. [9] 孙顺祥, 李金科, 甄宏宁, 等. 基于电网脆弱性评估的储能规划选址研究[J]. 电气技术, 2025, 26(3): 7-14. [10] 匡洪海, 徐雨淏, 李子龙, 等. 计及需求响应的海岛微电网双层优化运行[J]. 电气技术, 2025, 26(3): 15-21, 29. [11] 于惠钧, 马凡烁, 陈刚, 等. 基于改进灰狼优化算法的含光伏配电网动态无功优化[J]. 电气技术, 2024, 25(4): 7-15, 58. [12] 王步华, 朱劭璇, 熊浩清, 等. 基于长短期记忆神经网络的检修态电网暂态稳定评估方法[J]. 电气技术, 2023, 24(1): 29-35, 43. [13] BANERJEE S, MORDINA B, SINHA P, et al.Recent advancement of supercapacitors: a current era of supercapacitor devices through the development of electrical double layer, pseudo and their hybrid supercapacitor electrodes[J]. Journal of Energy Storage, 2025, 108: 115075. [14] ESSA M E M, ALI M F, EL-KHOLY E E, et al. Improving micro-grid management: a review of inte- gration of supercapacitor across different operating modes[J]. Heliyon, 2025, 11(3): e42178. [15] TAN K M, BABU T S, RAMACHANDARAMURTHY V K, et al.Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39: 102591. [16] LIU Lei, ZHANG Xiyao, LIU Yanghe, et al.Electro- chemical energy storage devices-batteries, supercapa- citors, and battery-supercapacitor hybrid devices[J]. ACS Applied Electronic Materials, 2025, 7(6): 2233-2270. [17] 水涛. 考虑混合储能参与电网调频的综合控制策略研究[D]. 太原: 山西大学, 2023. [18] TSHIANI C T, UMENNE P.The characterization of the electric double-layer capacitor (EDLC) using Python/MATLAB/Simulink (PMS)-hybrid model[J]. Energies, 2022, 15(14): 5193. [19] MA Tianyi, XU Shiai, ZHU Mengshi.Hierarchical porous carbon based on waste quinoa straw for high-performance supercapacitors[J]. ACS Omega, 2024, 9(12): 13592-13602. [20] AUGUSTYN V, SIMON P, DUNN B.Pseudoca- pacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. [21] CHENG Xinyue, TIAN Xiaojuan, LIAO Shiqin, et al.Wet spinning for high-performance fiber supercapa- citor based on Fe-doped MnO2 and graphene[J]. Carbon, 2024, 230: 119572. [22] WANG Rui, LI Xinyi, NIE Zhiguo, et al.Metal/metal oxide nanoparticles-composited porous carbon for high- performance supercapacitors[J]. Journal of Energy Storage, 2021, 38: 102479. [23] XU Wenting, LIU Lianmei, WENG Wei.High- performance supercapacitor based on MnO/carbon nanofiber composite in extended potential windows[J]. Electrochimica Acta, 2021, 370: 137713. [24] DUBAL D P, AYYAD O, RUIZ V, et al.Hybrid energy storage: the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44(7): 1777-1790. [25] LEE S H, KIM J M.Improved performances of hybrid supercapacitors using granule Li4Ti5O12/activated carbon composite anode[J]. Materials Letters, 2018, 228: 220-223. [26] MAKINO S, YAMAMOTO R, SUGIMOTO S, et al.Room temperature performance of 4 V aqueous hybrid supercapacitor using multi-layered lithium-doped carbon negative electrode[J]. Journal of Power Sources, 2016, 326: 711-716. [27] REN Hao, ZHANG Lu, ZHANG Jingyuan, et al.Na+ pre-intercalated Na0.11MnO2 on three-dimensional graphene as cathode for aqueous zinc ion hybrid supercapacitor with high energy density[J]. Carbon, 2022, 198: 46-56. [28] SADAVAR S, WANG K J, KANG T, et al.Anion storage for hybrid supercapacitor[J]. Materials Today Energy, 2023, 37: 101388. [29] GBADEGESIN A O, SUN Yanxia, NWULU N I.Techno-economic analysis of storage degradation effect on levelised cost of hybrid energy storage systems[J]. Sustainable Energy Technologies and Assessments, 2019, 36: 100536. [30] LI Zhongliang, LIU Fang.Frequency and voltage regulation control strategy of Wind Turbine based on supercapacitors under power grid fault[J]. Energy Reports, 2023, 10: 2612-2622. [31] STECCA M, SOEIRO T B, ELIZONDO L R, et al.Lifetime estimation of grid-connected battery storage and power electronics inverter providing primary frequency regulation[J]. IEEE Open Journal of the Industrial Electronics Society, 2021, 2: 240-251. [32] BEGUIN F, PRESSER V, BALDUCCI A, et al.Carbons and electrolytes for advanced supercapa- citors[J]. Advanced Materials, 2014, 26(14): 2219-2251. [33] RUDRA S, SEO H W, SARKER S, et al.Super- capatteries as hybrid electrochemical energy storage devices: current status and future prospects[J]. Molecules, 2024, 29(1): 243-268. [34] LI Honglin, ZHANG Jie.Towards sustainable inte- gration: techno-economic analysis and future perspe- ctives of co-located wind and hydrogen energy systems[J]. Journal of Mechanical Design, 2024, 146(2): 020903. [35] RANA M M, UDDIN M, SARKAR M R, et al.A review on hybrid photovoltaic-battery energy storage system: current status, challenges, and future directions[J]. Journal of Energy Storage, 2022, 51: 104597. [36] 杜东来. 小样本场景下新型电力系统频率稳定性的STGCN预测研究[D]. 贵阳: 贵州大学, 2024. [37] 余黎明, 宋文英. 从张北柔直示范工程看中国柔直技术的发展[J]. 内燃机与配件, 2018(15): 240-242. [38] 张韵琦. 柔性直流电网的线路保护技术研究[D]. 济南: 山东大学, 2021. [39] GANDLA D, WU Xudong, ZHANG Fuming, et al.High-performance and high-voltage supercapacitors based on N-doped mesoporous activated carbon derived from dragon fruit peels[J]. ACS Omega, 2021, 6(11): 7615-7625. [40] GUO Yupeng, QI Jurui, JIANG Yanqiu, et al.Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics, 2003, 80(3): 704-709. [41] VIJAYAKUMAR M, SANKAR D A B, ROHITA D S, et al. Achieving high voltage and excellent rate capability supercapacitor electrodes derived from bio-renewable and sustainable resource[J]. Chemistry Select, 2020, 5(28): 8759-8772. [42] IZADI-NAJAFABADI A, YASUDA S, KOBASHI K, et al.Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density[J]. Advanced Materials, 2010, 22(35): E235-E241. [43] BOKHARI S W, SIDDIQUE A H, SHERRELL P C, et al.Advances in graphene-based supercapacitor elec- trodes[J]. Energy Reports, 2020, 6: 2768-2784. [44] SHARMA P, PARASHAR P, GHOSH D, et al.A review on microwave assisted synthesis of transition metal oxides and their potent application as super- capacitors[J]. Chemistryselect, 2023, 8(47): 2768-2784. [45] GAIKWAD P, TIWARI N, KAMAT R, et al.A comprehensive review on the progress of transition metal oxides materials as a supercapacitor electrode[J]. Materials Science and Engineering: B, 2024, 307: 117544. [46] NAGUIB M, KURTOGLU M, PRESSER V, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. [47] XI Wen, ZHANG Youfang, ZHANG Junpu, et al.Constructing MXene hydrogels and aerogels for rechargeable supercapacitors and batteries[J]. Journal of Materials Chemistry C, 2023, 11(7): 2414-2429. [48] SHAO Liang, XU Juanjuan, MA Jianzhong, et al.MXene/RGO composite aerogels with light and high- strength for supercapacitor electrode materials[J]. Composites Communications, 2020, 19: 108-113. [49] LISHESHAR I W, ROUHI S, AY F, et al.High- performance supercapacitors based on nonfunctionalized MXenes[J]. Journal of Power Sources, 2025, 628: 235894. [50] LI Mengbin, HE Lizhong.Synthesis and properties of 2D MXenes and their composite electrodes for supercapacitors[J]. Journal of Energy Storage, 2024, 104: 114418. [51] MENG Jingjing, LU Shixiang, XU Wenguo, et al.Fabrication of composite material of RuCo2O4 and graphene on nickel foam for supercapacitor elec- trodes[J]. RSC Advances, 2022, 12(24): 15508-15516. [52] KHANDARE L N, GUNJAL K, BHOSALE S R, et al.High-performance supercapacitors based on Sb2Se3- rGO composite materials for advanced energy storage[J]. Journal of Alloys and Compounds, 2025, 1021: 179504. [53] SUN Hao, CHE Renchao, YOU Xiao, et al.Cross- stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials, 2014, 26(48): 8120-8125. [54] SONG Y Z, LIU Z X, HUANG Y A.Synthesis of MnMoO4/α-MoO3 composite materials for super- capacitor[J]. Inorganic Chemistry Communications, 2024, 170: 113481. [55] LU Jianyi, ZHANG Jiqing, WANG Xiaosong, et al.A review of advanced electrolytes for supercapacitors[J]. Journal of Energy Storage, 2024, 103: 114338. [56] HE Xinping, ZHUANG Tianyi, RUAN Shuai, et al.An innovative poly (ionic liquid) hydrogel-based anti- freezing electrolyte with high conductivity for supercapacitor[J]. Chemical Engineering Journal, 2023, 466: 143209. [57] AHMED M, TATRARI G, JOHANSSON P, et al.Sweet ionic liquids as high-temperature and high- voltage supercapacitor electrolytes[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(46): 16896-16904. [58] JAIN P, ANTZUTKIN O N.Nonhalogenated surface- active ionic liquid as an electrolyte for supercapa- citors[J]. ACS Applied Energy Materials, 2021, 4(8): 7775-7785. [59] HUANG Bai, LIU Wanwan, LAN Yufan, et al.Highly ion-conducting, robust and environmentally stable poly (vinyl alcohol) eutectic gels designed by natural polyelectrolytes for flexible wearable sensors and supercapacitors[J]. Chemical Engineering Journal, 2024, 480: 147888. [60] HU Qinzheng, CUI Shuzhen, SUN Kanjun, et al.An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapa- citor[J]. Journal of Energy Storage, 2022, 50: 104231. [61] CHEN Jiwei, SHI Dongjian, YANG Zhaokun, et al.A solvent-exchange strategy to develop stiff and tough hydrogel electrolytes for flexible and stable super- capacitor[J]. Journal of Power Sources, 2022, 532: 231326. [62] ALIPOORI S, ABOUTALEBI S H, BARSBAY M.Enhancing the performance of solid-state supercapa- citors: optimizing the molecular interactions in flexible gel polymer electrolytes[J]. Journal of Solid State Electrochemistry, 2024, 28(8): 2643-2657. [63] AETIZAZ M, SARFARAZ S, AYUB K.Interaction of imidazolium based ionic liquid electrolytes with carbon nitride electrodes in supercapacitors; a step forward for understanding electrode-electrolyte inte- raction[J]. Journal of Molecular Liquids, 2023, 369: 120955. [64] KHAN P, JAMSHAID M, TABASSUM S, et al.Exploring the interaction of ionic liquids with Al12N12 and Al12P12 nanocages for better electrode-electrolyte materials in super capacitors[J]. Journal of Molecular Liquids, 2021, 344: 117828. [65] LI Jing, TANG Jie, YUAN Jinshi, et al.Interactions between graphene and ionic liquid electrolyte in supercapacitors[J]. Electrochimica Acta, 2016, 197: 84-91. [66] SCHWEIZER S, LANDWEHR J, ETZOLD B J M, et al. Combined computational and experimental study on the influence of surface chemistry of carbon-based electrodes on electrode-electrolyte interactions in supercapacitors[J]. The Journal of Physical Chemistry C, 2019, 123(5): 2716-2727. |
|
|
|