|
|
|
| Analysis of the lateral vibration modes and critical speed factors of steam turbine generator shaft systems |
| QIAO Di, LI Juan, YANG Junjie |
| College of Automation, Beijing Information Science & Technology University, Beijing 100192 |
|
|
|
|
Abstract The operation of steam turbine generator shaft systems near critical speeds can induce resonant vibrations, compromising operational safety and stability. While existing studies have extensively investigated the lateral vibration critical speeds of individual rotors or the entire shaft system, the relationship between the critical speeds of constituent rotors and the integrated shaft system remains underexplored. Here, a 600 MW turbine-generator shaft system is examined by first establishing a transfer matrix model and a three-dimensional finite element model without support bearings to derive its inherent bending modes. Subsequently, finite element analysis is employed to elucidate the correlation between the critical speeds and modal shapes of the fully supported shaft system and those of its individual rotors. Furthermore, the influence of bearing oil film stiffness on the shaft system's critical speeds is systematically evaluated. Findings reveal that the first six modal shapes of the shaft system are predominantly governed by the modes of the individual rotor whose critical speed is closest to, yet lower than, the corresponding shaft system critical speed. Notably, the fifth and sixth modes exhibit coupled vibrations involving this rotor and its adjacent counterparts. Increasing the oil film stiffness of a rotor's bearings selectively elevates the critical speeds of shaft system modes associated with that rotor, while leaving other modes largely unaffected. These insights provide a foundational framework for optimizing the design and vibration monitoring of large-scale steam turbine generator shaft systems.
|
|
Received: 09 June 2025
|
|
|
|
| Cite this article: |
|
QIAO Di,LI Juan,YANG Junjie. Analysis of the lateral vibration modes and critical speed factors of steam turbine generator shaft systems[J]. Electrical Engineering, 2026, 27(2): 13-24.
|
|
|
|
| URL: |
|
https://dqjs.cesmedia.cn/EN/Y2026/V27/I2/13
|
[1] 马辉, 韩清凯, 太兴宇, 等. 转子系统动力学基础与数值仿真[M]. 武汉: 武汉理工大学出版社, 2018. [2] 李佳龙, 卢新宇, 杜雄, 等. 考虑轴系特性的汽轮发电机阻抗模型[J]. 电工技术学报, 2024, 39(15): 4767-4781. [3] 潘贺. 超超临界1030MW汽轮机转子振动大故障诊断及处理[J]. 节能技术, 2024, 42(4): 368-372. [4] 辛士红, 袁海, 吴兴燕, 等. 汽轮机低压转子叶片脱落故障振动特征分析[J]. 内蒙古电力技术, 2023, 41(6): 57-61. [5] 李立波, 张凯波. 深度调峰工况下某汽轮机异常振动原因分析[J]. 汽轮机技术, 2023, 65(1): 74-76. [6] Yang Wenjun, Liang Mingxuan, Wang Lei, et al.Research on unbalance response characteristics of gas turbine blade-disk rotor system[J]. Journal of Vibroen-gineering, 2018, 20(4): 1676-1690. [7] 孟召军, 刘彦良, 孙鑫. 不平衡质量对转子临界转速影响分析[J]. 沈阳工程学院学报(自然科学版), 2019, 15(3): 219-222. [8] 王文飚, 薛建明, 谭锐, 等. 二次再热超超临界汽轮发电机组轴系动力响应特性研究[J]. 汽轮机技术, 2020, 62(5): 363-366. [9] 关哲民. 基于不同材料反光盘的转速装置临界转速分析[J]. 计量与测试技术, 2025, 51(6): 107-109, 112. [10] 潘宏刚, 李根稼, 郭宝仁, 等. 基于传递矩阵算法的支承变化对临界转速影响的灵敏度分析[J]. 汽轮机技术, 2022, 64(6): 416-420, 423. [11] 潘宏刚, 李根稼, 郭宝仁, 等. 双跨转子系统的临界转速影响因素分析[J]. 汽轮机技术, 2023, 65(2): 115-118, 135. [12] 白堃. 连续三支撑(N+1支撑)轴系振动特性研究[D]. 南京: 东南大学, 2021. [13] 张世海, 刘雄彪, 李录平, 等. 600MW汽轮发电机组转子系统建模与动力学特性分析[J]. 汽轮机技术, 2016, 58(1): 13-16. [14] 乔迪, 李娟, 杨俊杰. 汽轮发电机组轴系扭振危险截面分析[J]. 北京信息科技大学学报(自然科学版), 2024, 39(5): 32-39. [15] 杨俊杰, 李娟, 乔迪. 大型汽轮发电机组轴系扭振预应力模态分析[J]. 电气技术, 2025, 26(7): 32-39, 45. [16] 张健, 廖上斌. 汽轮机轴系支撑方案探讨[J]. 东方汽轮机, 2023(2): 1-5, 27. [17] 钟一谔. 转子动力学[M]. 北京: 清华大学出版社, 1987. [18] 程浩, 张爱强, 倪德, 等. 计及陀螺效应的高速齿轮轴系涡动现象及临界转速分析[J]. 机械科学与技术, 2023, 42(2): 173-180. [19] 朱宇腾, 李东亚, 李锦鹏, 等. 基于ANSYS Workbench的磨削用电主轴转子动力学特性研究[J]. 哈尔滨轴承, 2024, 45(2): 13-18. [20] 张日, 季晴. 基于有限元仿真的多边形空心电动机轴强度分析[J]. 电气技术, 2024, 25(8): 53-57. [21] 魏铭硕. 基于有限元法的汽轮发电机轴系动态特性及阻尼特性研究[D]. 南宁: 广西大学, 2021. [22] 周曙明. 碰摩引起的汽轮机转子振动特性有限元分析[D]. 长沙: 长沙理工大学, 2017. |
|
|
|