|
|
Research on the application of digital technology in valve cooling system |
DONG Xi1, LIU Dongchuan1, JIANG Nan1, GAO Yuan2, SHI Yangyang1 |
1. NR Electric Co., Ltd, Nanjing 210000; 2. NR Electric Power Electronics Co., Ltd, Changzhou, Jiangsu 213000 |
|
|
Abstract Valve cooling system plays an important role in DC transmission engineering. The current control and protection systems still lack the ability to make predictive judgments on potential faults in valve cooling equipment, and there is an urgent need to strengthen effective monitoring of equipment through digital means. Based on the experience of existing digital pilot stations, this paper introduces the data sources of the digital platform, and at the same time, aiming at the shortcomings of the lack of intelligence in existing valve cooling control and protection equipment, it proposes applications of digital technologies such as data analysis prediction, health assessment of the main pump, health assessment of the valve cooling system, leakage warning, and fault diagnosis, to reduce the operating costs and fault handling time of converter stations, and improve the operational reliability of the power grid.
|
Received: 15 August 2024
|
|
|
|
Cite this article: |
DONG Xi,LIU Dongchuan,JIANG Nan等. Research on the application of digital technology in valve cooling system[J]. Electrical Engineering, 2024, 25(12): 73-79.
|
|
|
|
URL: |
https://dqjs.cesmedia.cn/EN/Y2024/V25/I12/73
|
[1] 张蔓, 张鹏, 郑望其, 等. 南方电网公司直流输电系统可靠性分析[J]. 南方电网技术, 2014, 8(2): 15-18. [2] 江楠, 董熙, 邱树明, 等. 换流阀冷却控制系统的时滞稳定性分析[J]. 自动化与仪表, 2023, 38(4): 38-42, 58. [3] 张辉亮, 刘金革. 冷水机组在电力电子水冷却系统中的应用研究[J]. 电气技术, 2021, 22(1): 71-74. [4] 陈昊阳, 杜巍, 周晨阳, 等. 换流阀内冷却系统换热特性的研究进展[J]. 能源与环境, 2023(4): 72-76. [5] 孙文宝, 付娇娇, 成举, 等. 换流阀在高压直流输电系统中的应用及技术展望[J]. 电气传动自动化, 2023, 45(5): 47-50. [6] 赵伟杰, 罗薇, 陈文, 等. 换流阀冷却系统模块超差等异常报警信号故障处理及原因分析[J]. 电气技术, 2021, 22(3): 69-73. [7] 张柯, 李金旗. 数字站建设方案及技术探究[J]. 电气技术, 2023, 24(12): 68-74. [8] 王豆. 基于运行参数关联性分析的工业过程异常工况预测[D]. 杭州: 浙江大学, 2019. [9] 张朝辉, 梁家豪, 梁秉岗, 等. 基于时序分析的阀冷进阀温度预测方法[J]. 计算机系统应用, 2021, 30(4): 9-16. [10] 喻高瞻, 彭宏, 胡劲松, 等. 时间序列数据的分段线性表示[J]. 计算机应用与软件, 2007, 24(12): 17-18. [11] 臧国强, 刘晓莉, 徐颖菲, 等. 深度学习在电力设备缺陷识别中的应用进展[J]. 电气技术, 2022, 23(6): 1-7. [12] 顾卿. 大型机泵健康诊断与评估系统在原水厂的应用[J]. 净水技术, 2020, 39(3): 126-131. [13] 胡辉祥, 赖皓, 吕圣琦. 高压直流输电系统换流阀冷却系统内冷水渗漏故障精准检测与定位技术研究[J]. 电工技术, 2023(8): 208-211. [14] 廖毅, 罗炜, 蒋峰伟, 等. 换流阀冷却能力多维度分析与预警模型[J]. 南方电网技术, 2020, 14(7): 1-9. [15] 张军军. 基于余弦相似性的在线监测系统智能预警方法[J]. 电气技术, 2023, 24(9): 65-70. [16] 王步华, 朱劭璇, 熊浩清, 等. 基于长短期记忆神经网络的检修态电网暂态稳定评估方法[J]. 电气技术, 2023, 24(1): 29-35. [17] 涂彦昭, 高伟, 杨耿杰. 一种基于卷积神经网络和长短期记忆网络的光伏系统故障辨识方法[J]. 电气技术, 2022, 23(2): 48-54. [18] 禹晋云, 乔柱桥, 王玉俊, 等. 基于CVA的换流阀冷却系统故障诊断技术研究[J]. 高压电器, 2023, 59(11): 32-39. |
|
|
|