研究与开发
|
基于拉曼光谱技术的变压器绝缘油老化研究
周宇含, 刘庆珍
福州大学电气工程与自动化学院,福州 350108
Research on transformer insulating oil aging based on Raman spectra
ZHOU Yuhan, LIU Qingzhen
College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108
摘要 针对变压器绝缘油的实测拉曼光谱数据,以拉曼光谱技术为手段,以准确判别变压器绝缘老化状态为目的,开展基于拉曼光谱数据处理、特征提取和老化诊断的研究。首先,结合拉曼光谱噪声的变化规律,基于小波变换理论提出全局阈值小波变换滤波法,有效地去除拉曼光谱中的噪声信号。然后,基于自适应迭代重加权惩罚最小二乘法(airPLS)提出一种改进的基线校正方法,准确地去除拉曼光谱的荧光背景。其次,运用连续投影算法(SPA)提取拉曼光谱中的老化特征信息,并分析其与变压器绝缘油老化程度之间的关系。最后,基于轻量级梯度提升机(LightGBM)分类模型实现对变压器绝缘老化状态的准确判别,并以极限梯度提升(XGBoost)模型作为对照,比较二者的诊断精度。实验结果表明,轻量级梯度提升机模型的诊断精度具有明显优势,验证了所提取老化特征信息的有效性。
关键词 :
变压器绝缘油 ,
拉曼光谱 ,
噪声 ,
荧光背景 ,
特征提取 ,
老化判别
Abstract :With regard to the measured Raman spectral data of transformer insulating oil, the relevant research is carried out based on Raman spectral data processing, feature extraction and aging diagnosis with Raman spectral technology as a means to accurately identify the aging state of transformer insulation. First of all, combined with the law of change of Raman spectral noise, based on the wavelet transform theory, the global threshold wavelet transform filtering method is proposed, which effectively removes the noise signals in Raman spectra. Further, an improved baseline correction method is proposed based on the adaptive iterative reweighting penalized least squares (airPLS) method, which accurately removes the fluorescence background of Raman spectra. Secondly, the aging feature information in Raman spectra is extracted using successive projections algorithm (SPA), and its relationship with the aging degree of transformer insulating oil is analyzed. Finally, the light gradient boosting machine (LightGBM) classification model is used to realize accurate discrimination of transformer insulation aging state, and the extreme gradient boosting (XGBoost) model is used as a control group to compare the diagnostic accuracy of the two. The experimental results show that the LightGBM model possesses obvious advantages in diagnostic accuracy, and also further verifies the validity of the extracted aging feature information.
Key words :
transformer insulating oil
Raman spectra
noise
fluorescence background
feature extraction
determination of aging
收稿日期: 2025-02-18
基金资助: 国家自然科学基金资助项目(No. 51807030)
作者简介 : 周宇含(2000—),男,福建省福州市人,硕士研究生,研究方向为电力设备绝缘老化评估与智能故障诊断。
引用本文:
周宇含, 刘庆珍. 基于拉曼光谱技术的变压器绝缘油老化研究[J]. 电气技术, 2025, 26(6): 8-16.
ZHOU Yuhan, LIU Qingzhen. Research on transformer insulating oil aging based on Raman spectra. Electrical Engineering, 2025, 26(6): 8-16.
链接本文:
https://dqjs.cesmedia.cn/CN/Y2025/V26/I6/8
[1] 邹阳, 林锦茄, 李安娜, 等. 基于灰色关联分析和聚类云模型的变压器油纸绝缘状态评估[J]. 电力系统保护与控制, 2023, 51(21): 35-43. [2] 苏凯强, 刘庆珍. 基于TLS-ESPRIT算法的变压器油纸绝缘等效电路参数辨识及新特征量提取[J]. 电气技术, 2022, 23(7): 89-96. [3] 夏源, 杨丽君, 吕晓露, 等. 基于介质响应电流频变特性的油纸绝缘受潮状态评估方法[J]. 电工技术学报, 2024, 39(11): 3444-3456. [4] 林智勇, 李荣华, 黄国泰, 等. 基于频域介电谱二次微分解谱法的变压器油纸绝缘介电响应等效电路参数辨识[J/OL]. 电工技术学报, 1-10 [2025-02-18]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241347. [5] 陈新岗, 陈姝婷, 杨定坤, 等. 基于高维拉曼光谱数据的变压器油纸绝缘老化评估方法研究[J]. 光谱学与光谱分析, 2021, 41(5): 1463-1469. [6] 张振宇, 李永祥, 阎寒冰, 等. SF6 分解特征组分拉曼光谱检测分析系统设计[J]. 光学与光电技术, 2021, 19(6): 11-18. [7] 宋睿敏, 王建新, 陈伟根, 等. 矿物油中糠醛液芯光纤增强拉曼光谱原位检测方法[J]. 电工技术学报, 2023, 38(24): 6828-6838. [8] 范元超, 陈孝敬, 黄光造, 等. 基于拉曼光谱的电线绝缘材料老化状态评估[J]. 光谱学与光谱分析, 2022, 42(10): 3161-3167. [9] 范舟, 陈伟根, 万福, 等. 基于小波包能量熵和Fisher判别的油纸绝缘老化拉曼光谱诊断[J]. 光谱学与光谱分析, 2018, 38(10): 3117-3123. [10] 邹经鑫, 刘彦琴, 袁明哲, 等. 油纸绝缘老化状态判别的拉曼光谱特征研究[J]. 光谱学与光谱分析, 2021, 41(10): 3159-3165. [11] 王建新, 陈伟根, 王品一, 等. 变压器故障特征气体空芯反谐振光纤增强拉曼光谱检测[J]. 中国电机工程学报, 2022, 42(16): 6136-6144, 6187. [12] 陈新岗, 冯煜轩, 李昌鑫, 等. 基于多参量的变压器油中特征气体拉曼光谱分析[J]. 光谱学与光谱分析, 2020, 40(6): 1916-1922. [13] WANG Ruiqi, QI Ying, ZHANG Qiang, et al.A multi-step water quality prediction model based on the Savitzky-Golay filter and Transformer optimized network[J]. Environmental Science and Pollution Research, 2023, 30(50): 109299-109314. [14] 胡睿喆, 杨晓峰. 基于小波散射网络-贝叶斯优化门控循环单元的电力变压器声纹识别方法[J]. 电气技术, 2024, 25(8): 35-40, 46. [15] 方松琼, 邵荣君, 邱丽荣, 等. 基于小波变换的共焦拉曼图像去噪方法[J]. 光学技术, 2019, 45(3): 330-335. [16] 刘宗溢, 张彩虹, 蒋健康, 等. 基于拉曼光谱结合CNN-LSTM深度学习方法的铁皮石斛总黄酮含量快速检测研究[J]. 光谱学与光谱分析, 2024, 44(4): 1018-1024. [17] 王忠, 万冬冬, 单闯, 等. 基于反向传播神经网络的拉曼光谱去噪方法[J]. 光谱学与光谱分析, 2022, 42(5): 1553-1560. [18] 白云飞, 罗海燕, 李志伟, 等. 基于改进的自适应迭代重加权惩罚最小二乘的空间外差拉曼光谱基线校正方法[J]. 光学学报, 2024, 44(7): 251-259. [19] 刘庆珍, 张溢, 鄢仁武. 基于拉曼光谱数据处理和谱峰识别的变压器油绝缘老化研究[J]. 电力系统保护与控制, 2024, 52(8): 158-166. [20] ARAÚJO M C U, SALDANHA T C B, GALVÃO R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 57(2): 65-73. [21] CHEN Yiyang, CHU Bing, FREEMAN C T.Gen- eralized iterative learning control using successive projection: algorithm, convergence, and experimental verification[J]. IEEE Transactions on Control Systems Technology, 2020, 28(6): 2079-2091. [22] 贾宗潮, 王子鉴, 李雪莹, 等. 主成分分析和连续投影融合的海洋沉积物粒度分类研究[J]. 光谱学与光谱分析, 2023, 43(10): 3075-3080. [23] 牛芳鹏, 李新国, 白云岗, 等. 遗传算法和连续投影算法结合的土壤有机碳含量高光谱估算模型[J]. 光谱学与光谱分析, 2023, 43(7): 2232-2237. [24] 钱国超, 彭庆军, 彭惠. 变压器油中气体拉曼光谱光纤增强检测实验研究[J]. 云南电力技术, 2021, 49(6): 21-25. [25] PUNITHA N, DIVYA BHARATHI K, MANUSKANDAN S R, et al.Analysis of muscle fatigue progression using geometric features of surface electromyography signals and explainable XGBoost classifier[J]. Journal of Medical and Biological Engineering, 2024, 44(2): 191-197. [26] 韩璟琳, 冯喜春, 胡平, 等. 基于Hyperopt-LightGBM的直流配电网短期负荷抗噪声预测[J]. 高电压技术, 2024, 50(11): 4902-4911. [27] 王俊杰, 毕利, 张凯, 等. 基于多特征融合和XGBoost-LightGBM-ConvLSTM的短期光伏发电量预测[J]. 太阳能学报, 2023, 44(7): 168-174. [28] FRIFRA A, MAANAN M, MAANAN M, et al.Harnessing LSTM and XGBoost algorithms for storm prediction[J]. Scientific Reports, 2024, 14(1): 11381. [29] 赖汶鸿, 刘庆珍, 鄢仁武. 基于关联信息熵和轻量级梯度提升机的油纸绝缘特征优选策略[J]. 电气技术, 2024, 25(1): 34-41, 47.
[1]
王良锋, 李瑞, 尚筱雅, 李沁雪, 邱泽锦. 基于小波熵的配电网线路运行工况特征基因库构建 [J]. 电气技术, 2025, 26(2): 35-41.
[2]
冯志宇, 王博, 袁野. 永磁有刷直流电动机齿槽转矩与电磁噪声研究 [J]. 电气技术, 2022, 23(5): 62-67.
[3]
汪倩文, 饶红疆, 何益宏. 结合奇异值分解与最小描述长度准则的变压器极化电流数据去噪方法 [J]. 电气技术, 2021, 22(8): 39-44.
[4]
姚远, 陈志聪, 吴丽君, 程树英, 林培杰. 一种基于改进网格搜索和广义回归神经网络的锂离子电池健康状态估计方法 [J]. 电气技术, 2021, 22(7): 32-37.
[5]
蔡文斌, 程晓磊, 王鹏, 王渊. 基于DBSCAN二次聚类的配电网负荷缺失数据修补 [J]. 电气技术, 2021, 22(12): 27-33.
[6]
尹来宾, 许洪华, 彭晓晗, 夏伟栋, 马宏忠. 基于振动信号的锂离子电池故障诊断方法 [J]. 电气技术, 2021, 22(10): 71-75.
[7]
郭业凯, 邹炯斌. 高压电动机双速改造导致鼠笼条断裂的原因分析 [J]. 电气技术, 2020, 21(8): 136-141.
[8]
周雄, 周泽民, 彭彦军, 滕本科, 唐明. 特征图谱时频信号放电识别算法研究与现场应用 [J]. 电气技术, 2020, 21(6): 63-68.
[9]
李光, 王炳昱. 超高压电抗器隔声装置降噪散热性能分析 [J]. 电气技术, 2020, 21(2): 106-109.
[10]
唐斯, 陈新楚, 郑松. 基于注意力与多尺度卷积神经网络的电机轴承故障诊断 [J]. 电气技术, 2020, 21(11): 32-38.
[11]
张炳义, 刘振清. 转子混合偏心对低速大转矩永磁同步电动机的影响 [J]. 电气技术, 2019, 20(8): 23-27.
[12]
柳林, 尤方圆, 余汪洋, 杨勇, 王军. 电力变压器直流偏磁振动噪声特征研究 [J]. 电气技术, 2019, 20(7): 9-12.
[13]
常晨, 刘兰荣, 卢美林, 张俊杰, 金文德. 并联电抗器等效模型的振动噪声特性试验研究 [J]. 电气技术, 2019, 20(2): 37-41.
[14]
陈兴, 王青云. 一种基于窄带有源降噪的改进变步长变压器有源降噪算法 [J]. 电气技术, 2019, 20(11): 39-45.
[15]
曹效义. 浅析城市户内变电站降低噪声设计方案优化 [J]. 电气技术, 2018, 19(6): 97-101.