研究与开发
|
基于随机森林-卷积神经网络混合集成模型的风力发电功率预测
李桓, 滕云雷
国网山东省电力公司临沂供电公司,山东 临沂 276000
Wind power prediction based on hybrid integrated model of random forest-convolutional neural network
LI Huan, TENG Yunlei
State Grid Shandong Electric Power Company Linyi Power Supply Company, Linyi, Shandong 276000
摘要 风电功率预测对于确保风能可靠地接入电网起着关键作用。本文提出一种随机森林(RF)-卷积神经网络(CNN)混合模型,用于短期风电功率预测。该模型融合RF的集成技术、随机选择属性与CNN捕获风电时空特征的优势,增强预测的准确性和稳健性。首先,通过分析决策树与CNN的类比等效性,明确RF与CNN结合的理论依据;然后,构建包含方均根误差(RMSE)、决定系数和Spearman相关系数的风电功率预测模型评估指标体系;最后,基于欧洲地区风电场的3个开源数据集进行模型有效性验证。结果表明:与其他5种模型相比,RF-CNN模型表现最优,验证了该模型进行风电功率预测的有效性和准确性。
关键词 :
风电功率预测 ,
随机森林 ,
卷积神经网络 ,
混合模型 ,
误差指标
Abstract :Wind power prediction plays a crucial role in ensuring the reliable integration of wind energy into the grid. This study proposes a novel hybrid model combining random forest (RF) and convolutional neural network (CNN), referred to as the RF-CNN model, specifically designed for short-term wind power prediction. The model integrates the advantages of RF integration technology, random selection of attributes, and CNN capturing the spatiotemporal characteristics of wind power, to enhance prediction accuracy and robustness. Firstly, by analyzing the analog equivalence between decision trees and CNNs, the theoretical basis for combining RF and CNN is established. Next, an evaluation system for wind power prediction models that includes root mean square error (RMSE), determination coefficient, and Spearman correlation coefficient is introduced. Finally, validatinos are conducted using three open-source wind power datasets from European wind farms. The results demonstrate that, compared to other five models, the RF-CNN model outperforms in all three datasets, thus confirming the model’s effectiveness and accuracy for wind power prediction.
Key words :
wind power prediction
random forest
convolutional neural network
hybrid model
error index
收稿日期: 2025-01-20
作者简介 : 李 桓(1994—),男,山西省大同市人,硕士,中级工程师,主要从事新能源发电及负荷预测研究工作。
引用本文:
李桓, 滕云雷. 基于随机森林-卷积神经网络混合集成模型的风力发电功率预测[J]. 电气技术, 2025, 26(5): 27-33.
LI Huan, TENG Yunlei. Wind power prediction based on hybrid integrated model of random forest-convolutional neural network. Electrical Engineering, 2025, 26(5): 27-33.
链接本文:
https://dqjs.cesmedia.cn/CN/Y2025/V26/I5/27
[1] 王小明, 徐斌, 尹元亚, 等. 基于空间相关性与Stacking集成学习的风电功率预测方法[J]. 电力工程技术, 2024, 43(5): 224-232. [2] ZHOU Bowen, MA Xiangjin, LUO Yanhong, et al.Wind power prediction based on LSTM networks and nonparametric kernel density estimation[J]. IEEE Access, 2019, 7: 165279-165292. [3] 苏向敬, 程子凡, 聂良钊, 等. 基于AGCN-LSTM模型的海上风电场功率概率预测[J]. 电力系统自动化, 2024, 48(22): 140-149. [4] LIU Yongqian, SHI Jie, YANG Yongping, et al.Short- term wind-power prediction based on wavelet transform- support vector machine and statistic-characteristics analysis[J]. IEEE Transactions on Industry Applica- tions, 2012, 48(4): 1136-1141. [5] 胡锐, 乔加飞, 李永华, 等. 基于WOA-VMD-SSA- LSTM的中长期风电预测[J]. 太阳能学报, 2024, 45(9): 549-556. [6] 高晨, 赵勇, 汪德良, 等. 海上风电机组电气设备状态检修技术研究现状与展望[J]. 电工技术学报, 2022, 37(增刊1): 30-42. [7] 张玉典, 王宇驰. 离散小波变换结合BP神经网络的光伏发电功率预测[J]. 现代工业经济和信息化, 2024, 14(12): 262-263, 266. [8] 何厚桦, 王仲平, 崔萌. 基于EEMD-LSTM-WOA的风速预测混合模型[J]. 应用数学进展, 2024, 13(10): 4486-4497. [9] JIANG Ping, YANG Hufang, HENG Jiani.A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed fore- casting[J]. Applied Energy, 2019, 235: 786-801. [10] 董志文, 苏晶晶. 基于变分模态分解能量熵混合时域特征和随机森林的故障电弧检测方法[J]. 电气技术, 2024, 25(1): 1-7. [11] 衣思彤, 刘雅浓, 马耀浥, 等. 基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估[J]. 电气技术, 2024, 25(5): 1-10, 21. [12] 王立辉, 柯泳, 苏如开. 基于1DCNN-BiLSTM- BiGRU的电能质量扰动分类方法[J]. 电气技术, 2024, 25(5): 51-56, 64. [13] 涂彦昭, 高伟, 杨耿杰. 一种基于卷积神经网络和长短期记忆网络的光伏系统故障辨识方法[J]. 电气技术, 2022, 23(2): 48-54. [14] ZHANG Quanshi, YANG Yu, MA Haotian, et al.Interpreting CNNs via decision trees[EB/OL]. https://arxiv.org/abs/1802.00121v2. [15] ZAMEER A, ARSHAD J, KHAN A, et al.Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks[J]. Energy Conversion and Management, 2017, 134: 361-372. [16] 王昭栋, 王自法, 李兆焱, 等. 基于机器学习-网格搜索优化的砂土液化预测[J]. 振动与冲击, 2024, 43(5): 82-93. [17] 陈光宇, 袁文辉, 徐晓春, 等. 基于残差图卷积深度网络的电网无功储备需求快速计算方法[J]. 电工技术学报, 2023, 38(17): 4683-4700. [18] 刘笑, 杨建, 李力, 等. 基于机器学习的带被动阻尼直流微电网系统的稳定性检测[J]. 电工技术学报, 2024, 39(8): 2281-2293, 2324. [19] 刘金朋, 邓嘉明, 高鹏宇, 等. 基于VMD-IMPA- SVM的超短期风电功率预测[J]. 智慧电力, 2024, 52(7): 24-31, 79. [20] 刘坤. 基于随机森林的风力发电系统输出功率预测方法[J]. 光源与照明, 2022(7): 165-167. [21] 张维通, 闫正兵, 张正江, 等. 基于物理信息的时间卷积神经网络风电功率预测[J]. 计算机测量与控制, 2024, 32(11): 101-108, 117. [22] 李尊, 张小科, 张少峰, 等. 基于改进LSTM的风电功率预测因素分析[J]. 计算机仿真, 2024, 41(10): 63-68, 143. [23] 徐炜君, 裴欢, 魏勇. 基于粒子群优化的SVR风电功率超短期预测[J]. 东北师大学报(自然科学版), 2017, 49(1): 73-77. [24] 赵倩, 陈芳芳, 甘露. 基于改进粒子群算法优化支持向量机的风电功率预测[J]. 电气技术, 2020, 21(12): 12-16.
[1]
田芳, 周孝信, 于之虹. 基于卷积神经网络的电力系统小干扰稳定评估与预防控制 [J]. 电气技术, 2025, 26(3): 1-6.
[2]
刘羿萱, 杨昭. 基于变分模态分解和混合深度神经网络的短期电价预测 [J]. 电气技术, 2025, 26(3): 30-35.
[3]
翟道宇, 孙燕楠. 基于卷积神经网络和格拉姆角差场的四象限脉冲整流器故障诊断方法 [J]. 电气技术, 2025, 26(1): 23-32.
[4]
衣思彤, 刘雅浓, 马耀浥, 李文婕, 孔航. 基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估 [J]. 电气技术, 2024, 25(5): 1-10.
[5]
王立辉, 柯泳, 苏如开. 基于1DCNN-BiLSTM-BiGRU的电能质量扰动分类方法 [J]. 电气技术, 2024, 25(5): 51-56.
[6]
董志文, 苏晶晶. 基于变分模态分解能量熵混合时域特征和随机森林的故障电弧检测方法 [J]. 电气技术, 2024, 25(1): 1-7.
[7]
江晶晶, 窦真兰, 杨海涛, 赵敏. 贫乏信息下基于深度迁移学习的智慧建筑负荷预测方法 [J]. 电气技术, 2022, 23(5): 55-61.
[8]
涂彦昭, 高伟, 杨耿杰. 一种基于卷积神经网络和长短期记忆网络的光伏系统故障辨识方法 [J]. 电气技术, 2022, 23(2): 48-54.
[9]
陈振祥, 林培杰, 程树英, 陈志聪, 吴丽君. 基于K-means++和混合深度学习的光伏功率预测 [J]. 电气技术, 2021, 22(9): 7-13.
[10]
焦宗寒, 邵鑫明, 郑欣, 刘荣海. 基于振动信号频谱高斯混合模型的瓷支柱绝缘子故障诊断 [J]. 电气技术, 2021, 22(6): 36-42.
[11]
郭茜, 匡洪海, 王建辉, 周宇健, 高闰国. 单机风电功率人工智能预测模型综述 [J]. 电气技术, 2020, 21(2): 1-6.
[12]
唐斯, 陈新楚, 郑松. 基于注意力与多尺度卷积神经网络的电机轴承故障诊断 [J]. 电气技术, 2020, 21(11): 32-38.
[13]
王菲菲, 阮爱民, 魏刚, 孙海渤. 基于卷积神经网络的开关柜局部放电故障识别 [J]. 电气技术, 2019, 20(4): 76-81.
[14]
王召军, 许志猛. 基于低分辨率红外阵列传感器的人体身份和动作识别 [J]. 电气技术, 2019, 20(11): 6-10.
[15]
李明昆, 宋丹妮. 基于小波分析和随机森林算法的变流器电路故障诊断研究 [J]. 电气技术, 2016, 17(6): 36-40.